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Introduction: complex datamodelization

Problem Tomodel complex data, one is confronted with twomain questions:

• how tomanage the complexity of the data to be processed?
• how to infer global properties from local models?

These questions lead to 3 types of problems:

• the representation of data: how to obtain a global model from a local model?
• the inference of the distributions: how to use the model?
• the learning of the model: what are the parameters of the model?

For instance we present somemodels associated to classical problems.

Image Consider a n × n (pixels) monochromatic image. If each pixel is modelled by a discrete
random variable (so there are n2 of them), then the image can bemodelled using a grid.

Figure 1: Grid modelling the image

Bioinformatics Consider a long sequence of n DNA bases. If each base of this sequence is mod-
elled by a discrete random variable (that, in general, can take values in {A,C,G, T}), then the
sequence can bemodelled by a MARKOV chain:

MVA 2019/2020 Probabilistic Graphical Models Page 1 of 122



Figure 2: Graph of a MARKOV chain

Finance Consider the evolution of stock prices in discrete time, where we have values at time t.
It is reasonable to postulate that the change of price of a stock at time t + 1 only depends on its
price or the price of all stocks at time t.

Figure 3: Possible graph for 2 stocks

Speechprocessing Consider the syllables of awordand theway they are interpretedby ahuman
ear or by a computer. Each syllable can be represented by a random sound. The objective is then
to retrieve the word from the sequence of sounds heard or recorded. In this case, we can use a
hidden MARKOV model:

sil1 sil2 sil3

Y (1) Y (2) Y (3)

Figure 4: Graph for speech processing

Text Consider a text with 1000000 words. The text is modelled by a vector such that each of its
components equals to the number of times each keyword appears. This is usually called the “bag
of words” model. This model seems to be weak, as it does not take the order of the words into
account. However, it works quite well in practice. A so-called naive BAYES classifier can be used for
classification (for instance spam vs non spam).

It is clear thatmodels which ignore the dependence among variables are too simple for real-world
problems. On the other hand,models inwhich every randomvariable is dependent all or toomany
other ones are doomed both for statistical (lack of data) and computational reasons. Therefore, in
practice, onehas tomake suitable assumptions todesignmodelswith the right level of complexity,
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so that the models obtained are able to generalizewell from a statistical point of view and lead to
tractable computations from an algorithmic perspective.

[todo]

General issues in this class [todo]

1. Representation→ DGM, UGM / parameterization→ exponential family

2. Inference (computing p(xA | xB))→ sum-product algorithm

3. Statistical estimation→maximum likelihood, maximum entropy
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CHAPTER 1

Maximum likelihood estimation

In Annex I. you can find a review of basic probabilities.

I. Statistical models
DEFINITION I. .1. [STATISTICAL MODEL]
A (parametric) statistical model PΘ is a collection of probability distributions (or a collection of
probability density functionsa) defined on the same space and parameterized by parameters θ
belonging to a setΘ ⊂ Rp. Formally:

PΘ = {pθ | θ ∈ Θ}

ain which case they are all definedwith respect to the same basemeasure, such as the LEBESGUEmeasure inRd

BERNOULLI model Consider a binary random variableX that can take the value 0 or 1.
If p(X = 1) is parametrized by θ ∈ [0, 1], we have:

p(X = 1) = θ and p(X = 0) = 1− θ
that we can summarized by p(X = x) = θx(1− θ)1−x and we writeX ∼ B(θ).

The BERNOULLI model is the collection of these distributions for θ ∈ Θ = [0, 1] :
PBERNOULLI = {B(θ) | θ ∈ [0, 1]}

Binomial model A binomial random variable B(θ, n) is defined as the value of the sum of n i.i.d.
BERNOULLI random variables with parameter θ ∈ Θ = [0, 1]. The distribution of a random variable
N ∼ B(θ, n) is given by

∀k ∈ J0, NK, p(N = k) =
(
n

k

)
θk(1− θ)n−k

The binomial model is then
Pbinomial = {B(θ, n) | θ ∈ [0, 1]}

Note that in many cases n is known and thus only θ is the parameter, but sometimes we can have
both θ and n as parameters.
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CHAPTER 1 – MAXIMUM LIKELIHOOD ESTIMATION

Multinomial model Consider a discrete random variable C that can take values in J1, KK. The
randomvariableC canbe representedbyaK-dimensional randomvariableX = (1C=1,1C=2, . . . ,1C=K)
and we have the following event correspondance: {C = k} = {Xk = 1}.

If we parametrize p(C = k) by a parameter πk ∈ [0, 1], then by definition we also have

∀k ∈ J1, KK, p(Xk = 1) = πk

and we know that
∑K
k=1 πk = 1. The probability distribution can be written as:

∀x ∈ XK , p(x) =
K∏
k=1

πxkk whereXK =
{
x ∈ {0, 1}K |

K∑
k=1

xk = 1
}

Wewill denoteM(1, π1, . . . , πK) such a discrete distribution1. The multinomial model is:

Pmultinomial =
{
M(1, π) | π ∈ RK

+ ,
K∑
k=1

πk = 1
}

Consider now C1, . . . , Cn i.i.d. random variables of distributionM(1, π), and denote by Nk the
number of variables equal to k, then the joint distribution of (N1, N2, . . . , NK) is called amultino-
mial distribution of parameters n and π, denoted byM(n, π). With the second representation, we
have thatM(n, π) is the law of∑n

i=1Xi where (Xi)1≤i≤n
i.i.d.∼ M(1, π). It takes the form:

p(n1, n2, . . . , nK) = n!∏K
k=1 nk!

K∏
k=1

πnkk

ThemultinomialM(n, π) is to theM(1, π)distributionas thebinomialdistribution is to theBERNOULLI
distribution. In the rest of this course, when we will talk about multinomial distributions, we will
always refer to aM(1, π) distribution.

Gaussian models The Gaussian distribution is also known as the normal distribution. N (µ, σ2)
the normal distribution with mean µ ∈ R and variance σ2 > 0 can be written in the form

∀x ∈ R, p(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
Themodel is then:

PGaussian =
{
N (µ, σ2) | µ ∈ R, σ > 0

}
ThemultivariateGaussiandistributionof ad-dimensional vectorwithmeanµ ∈ Rd andcovariance
Σ ∈Md d(R) symmetric positive definite matrix takes the form

∀x ∈ Rd, p(x) = 1
(2π)d/2

1√
det(Σ)

exp
(
− 1

2(x− µ)>Σ−1(x− µ)
)

and is denoted by N (µ,Σ). Tt is a well-known property that µ is equal to the expectation of the
law and thatΣ is the covariance matrix of the law. The model is then:

Pmultivariate Gaussian =
{
N (µ,Σ2) | µ ∈ Rd,Σ ∈ Sd(R),Σ� 0

}
1note that this stands forC andX : we choose the representation we want, depending on the context
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CHAPTER 1 – MAXIMUM LIKELIHOOD ESTIMATION

II. Parameter estimation bymaximum likelihood

II. A. Definition

Maximum likelihood estimation is a method of estimating the parameters of a statistical model.

LetPΘ be a statistical model and x1, . . . , xn be i.i.d. observations from a distribution pθ∗ for a fixed
unknown θ∗ ∈ Θ. As the name suggests, the maximum likelihood estimator is the parameter θ̂MLE
under which the data are most likely.

DEFINITION II. .1. [LIKELIHOOD]
The likelihood of x1, . . . , xn is defined as the function:

L : Θ −→ [0, 1]
θ 7−→ pθ(x1, . . . , xn) = ∏n

i=1 pθ(xi)

We can also considera the log-likelihood:

` : θ ∈ Θ 7−→ logL(θ) =
n∑
i=1

log pθ(xi)

ain practice it is o�enmore convenient to work with the log-likelihood function

DEFINITION II. .2. [MAXIMUM LIKELIHOOD ESTIMATOR]
Themaximum likelihood estimator of θ∗ is defined as:

θ̂MLE = argmaxθ∈Θ L(θ) = argmaxθ∈Θ `(θ)

Next, we will apply this method for the models previously presented.

II. B. MLE for the Bernoulli model

Consider x1, x2, . . . , xn i.i.d. observations of B(θ). We have

`(θ) =
n∑
i=1

log pθ(xi) =
n∑
i=1

log θxi(1− θ)1−xi = n1 log(θ) + (n− n1) log(1− θ)

where n1 = ∑n
i=1 xi = ∑n

i=1 1xi=1 is the number of success in our sample.
As `(θ) is strictly concave, it has a uniquemaximizer, and since the function is in addition di�eren-
tiable, its maximizer θ̂MLE is the zero of its gradient. One can compute:

∇`(θ) = ∂

∂θ
`(θ) = n1

θ
− n− n1

1− θ

and the zero of the gradient is n1
n
. Therefore we have

θ̂MLE = n1

n
= 1
n

n∑
i=1

xi
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CHAPTER 1 – MAXIMUM LIKELIHOOD ESTIMATION

II. C. MLE for themultinomial model

Consider x1, x2, . . . , xn ∈ XK i.i.d. observations ofM(1, π). We have

`(π) =
n∑
i=1

log p(xi) =
n∑
i=1

log
( K∏
k=1

πxikk
)

=
n∑
i=1

K∑
k=1

xik log πk =
K∑
k=1

nk log πk

where nk = ∑n
i=1 xik = ∑n

i=1 1xik=1 is the number of observations of the value k.

We need to maximize this quantity subject to the constraint
∑K
k=1 πk = 1 and πk ≥ 0 for all k ∈

J1, KK.

We forget the inequality constraint and we try to minimize f(π) = −`(π) = −∑K
k=1 nk log πk

subject to the constraint 1>π = 1. We introduce the Lagrangian of this problem (see Annex II. for
more details):

L(π, λ) = −
K∑
k=1

nk log πk + λ
( K∑
k=1

πk − 1
)

Clearly, as all (nk)1≤k≤K are nonnegative, f is convex and this problem is a convex optimization
problem. Moreover, it is trivial that there exist a strictly feasible point2, so by SLATER’s constraint
qualification, the problem satisfies strong duality. Therefore, we have

min
π
f(π) = max

λ
min
π
L(π, λ)

As L(., λ) is convex, it su�ices to find a zero of the gradient of L w.r.t. π to findminπ L(π, λ). This
yields

∀k ∈ J1, KK, ∂L
∂πk

= −nk
πk

+ λ = 0 ⇐⇒ πk = nk
λ

Substituting these into the constraint
∑K
k=1 πk = 1 we get λ = ∑K

k=1 nk = n. Finally we get the
MLE of π:

π̂MLE = 1
n

n∑
i=1

xi

II. D. MLE for the univariate Gaussianmodel

Consider x1, x2, . . . , xn i.i.d. observations aN (µ, σ2). We have

`(µ, σ2) =
n∑
i=1

log pµ,σ2(xi) =
n∑
i=1

log
[ 1√

2πσ2
exp

(
− (xi − µ)2

2σ2

)]
= −n2 log(2π)− n

2 log(σ2)− 1
2

n∑
i=1

(xi − µ)2

σ2

We need to maximize this quantity with respect to µ and σ2. By taking derivative w.r.t. µ and then
σ2, it is easy to obtain that the pair (µ̂MLE, σ̂2

MLE), defined by

µ̂MLE = 1
n

n∑
i=1

xi and σ̂2
MLE = 1

n

n∑
i=1

(xi − µ̂)2

2that is to say a vector π such that π1, π2, . . . , πK are positive and
∑K
k=1 πk = 1
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CHAPTER 1 – MAXIMUM LIKELIHOOD ESTIMATION

is the only stationary point of the likelihood. One can actually check (for example computing the
Hessian w.r.t. (µ, σ2)) that this is actually a maximum. We will have a confirmation of this in the
chapter on exponential families (see Chapter 7).

II. E. MLE for themultivariate Gaussianmodel

Let x1, . . . , xn be an i.i.d. sample ofN (µ,Σ) with µ ∈ Rd and Σ ∈ S++
d (R) definite positive. The

log-likelihood is given by:

`(µ,Σ) =
n∑
i=1

log pµ,Σ(xi) = −nd2 log(2π)− n

2 log(det Σ)− 1
2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

In this case, one should be careful that these log-likelihoods are not concave w.r.t. the pair of pa-
rameters (µ,Σ). They are concave w.r.t. µ when Σ is fixed but they are not even concave w.r.t. Σ
when µ is fixed.

Let us first di�erentiate `w.r.t. µ. We need to di�erentiate for a fixed x:

µ 7−→ (x− µ)>Σ−1(x− µ)

which is equal to f ◦ g where:

f : Rd −→ R
y 7−→ y>Σ−1y

and g : Rd −→ Rd

µ 7−→ x− µ

Using the example of Annex III. , we know that

∇fy = Σ−1y and ∇gµ = −1

asΣ−1 is symmetric. By the di�erentiation of a composition we obtain:

∇f ◦ gµ(h) = Σ−1(µ− x)

Thus we have:

∇µ`(µ,Σ−1) =
n∑
i=1

Σ−1(µ− xi) = Σ−1
(
nµ−

n∑
i=1

xi
)

= Σ−1
(
nµ− nx

)

where x = 1
n

∑n
i=1 xi. One can check that there is a unique zero of this gradient, which give the

MLE of µ:

µ̂MLE = 1
n

n∑
i=1

xi

Let us now di�erentiate `w.r.t.Λ = Σ−1. We have:

`(µ,Σ) = −nd2 log(2π) + n

2 log(det Λ)− 1
2

n∑
i=1

(xi − µ)>Λ(xi − µ)
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CHAPTER 1 – MAXIMUM LIKELIHOOD ESTIMATION

All terms of the sum are real number, so are equal to their trace. Thus:

`(µ,Σ) = −nd2 log(2π) + n

2 log(det Λ)− 1
2

n∑
i=1

Tr
(
(xi − µ)>Λ(xi − µ)

)
= −nd2 log(2π) + n

2 log(det Λ)− n

2 Tr(ΛΣ̃)

where Σ̃ = 1
n

∑n
i=1(xi − µ)(xi − µ)> is the empirical covariance matrix.

We need to di�erentiate λ 7−→ log det(λ) and λ 7−→ Tr(ΛΣ̃). One can obtain (see Annex III. for
details):

∇ log det(λ) = λ−1 = Σ and ∇Tr(ΛΣ̃) = Σ̃

And the gradient of `w.r.t.Λ is:
∇Λ` = n

2 (Σ̃− Σ)

which is equal to zero if and only ifΣ = Σ̃.

Finally we have shown that the pair

µ̂ = x = 1
n

n∑
i=1

xi and Σ̂MLE = 1
n

n∑
i=1

(xi − x)(xi − x)>

is the only stationary point of the likelihood. One can actually check (for example computing the
Hessian w.r.t. (µ,Σ) that this is actually amaximum. Wewill also have a confirmation of this in the
lecture on exponential families.

REMARK II. .1. Note that we assumed thatΛwas invertible, which is an implicit condition when
writing log det Λ. This implies that in a rigorous sense the maximum likelihood estimator is un-
defined when Σ̃ is not invertible. In practice, the maximum likelihood estimator is extended by
continuity to the rank deficient case.
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CHAPTER 2

Regression

In the last chapter, we considered a model with one node, i.e. with a unique variable and thus
distribution. In this lecture, we work with two nodes: one corresponding to an input X , and the
other corresponding to an output Y .

Recall that when dealing with two random variables X and Y , one can use a generative model,
i.e.whichmodels the joint distribution p(X, Y ), or one canuse insteada conditionalmodel1, which
models the conditional probability of the output, given the input p(Y |X). The two followingmod-
els, linear regression and logistic regression, are conditional models.

I. Linear regression

We consider the followingmodel: we assume that Y ∈ R depends linearly onX ∈ Rp: there exists
a w ∈ Rp called weighting vector and σ2 > 0 such that

Y |X ∼ N (w>X, σ2)

which can be rewritten as

Y = w>X + ε where ε ∼ N (0, σ2)

REMARK I. .1. It is possible to add an o�set w0 ∈ R, that is, if the model is Y = w>X + w0 + ε,
we can redefine a weighting vector w̃ = (w,w0) ∈ Rp+1 such that

Y = w̃>
(
X
1

)
+ ε

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations. Each yi is a label (a decision) on the observation xi.
We consider the conditional distribution of all outputs given all inputs:

pw,σ2(y | x) =
n∏
i=1

pw,σ2(yi | xi)

1o�en considered equivalent to the slightly di�erent concept of discriminative model
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CHAPTER 2 – REGRESSION

The associated log-likelihood has the following expression:

`(w, σ2) =
n∑
i=1

log pw,σ2(yi | xi) = −n2 log(2πσ2)− 1
2

n∑
i=1

(yi − w>xi)2

σ2

Theminimization problemwith respect to w can now be reformulated as:

min
w

1
2n

n∑
i=1

(yi − w>xi)2

DEFINITION I. .1. [DESIGN MATRIX]
The design matrix X ∈Mn p(R) is defined as:

X =


x>1
...
x>n



Theminimization problem over w can be rewritten in a more compact way as:

min
w

1
2n ‖y − Xw‖

2
2

Introduce now the following function:

f : w 7−→ 1
2n ‖y − Xw‖

2
2 = 1

2n(y>y − 2w>X>y + w>X>Xw)

f is strictly convex if and only if its Hessian matrix is nonsingular.

REMARK I. .2. This is never the casewhenn < p (andwe say thatwe deal with underdetermined
problems). Most of the time, the Hessianmatrix is nonsingular when n ≥ p. When this is not the
case, we o�en use the TYCHONOV regularization, which adds a penalization of the `2-norm of w
byminimizing f(w) + λ ‖w‖2

2 with some hyperparameter λ > 0.

The gradient of f is

∇f(w) = 1
n
X>(Xw − y)

which is equal to zero if and only if X>Xw = X>y. This equation is known as the normal equation.
If X>X is nonsingular, then the optimal weighting vector is

ŵ = (X>X)−1X>y = X†y

where X† = (X>X)−1X> is the MOORE-PENROSE pseudo-inverse ofX .

REMARK I. .3. If X>X is singular, the solution is not unique anymore, and for any h ∈ ker(X),
ŵ = (X>X)†X>y+h is an admissible solution. In that case however it would be necessary to use
regularization.
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REMARK I. .4. The computational cost to evaluate the optimal weighting vector from X and y is
O(p3) (we use a CHOLESKY decomposition of X>X and solve two triangular systems).

Now, let us di�erentiate `w.r.t. σ2: we have

∇σ2`(w, σ2) = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − w>xi)2

Setting∇σ2`(w, σ2) to zero gives the MLE of σ2:

σ̂2 = 1
n

n∑
i=1

(yi − w>xi)2

REMARK I. .5. In practice, whenever we use a data matrix X in machine learning, we first pre-
process it to try and avoid that it would be too badly conditioned, so to avoid numerical issues.
Twomain operations are applied columnwise: first, a centering (remove themean of the coe�i-
cients) and a normalization (divide coe�icients from a column by the standard deviation of the
column vector). Note that this preprocessing does not guarantee that the matrix we obtain is
well-conditioned: in particular, it can be low rank . . .

II. Logistic regression

DEFINITION II. .1. [SIGMOID FUNCTION]
The sigmoid function is defined as:

σ : R −→ [0, 1]
z 7−→ 1

1+e−z

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0
Graph of σ

Figure 2.1: The sigmoid function
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PROPOSITION II. .1. σ satisfies the following properties:

∀z ∈ R, σ(−z) = 1− σ(z) and σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z)

ConsidernowanothermodelwhereY ∈ {0, 1}andX ∈ Rp. WeassumethatY followsaBERNOULLI
distribution with parameter θ = σ(w>x)where w ∈ Rp is a fixed weighting vector. The problem is
to estimate θ.

REMARK II. .1. There again we can add an o�set.

The conditional distribution is given by

pθ(Y = y |X = x) = θy(1− θ)1−y = σ(w>x)yσ(−w>x)1−y

Given an i.i.d. training set (x1, y1), . . . , (xn, yn), we can compute the log-likelihood:

`(w) =
n∑
i=1

yi log σ(w>xi) + (1− yi) log σ(−w>xi)

In order to minimize the log-likelihood, since z 7−→ log(1 + e−z) is a convex function and w 7−→
w>xi is linear, we calculate its gradient. With ηi = σ(w>xi):

∇`(w) =
n∑
i=1

yixi
σ(w>xi)σ(−w>xi)

σ(w>xi)
− (1− yi)xi

σ(w>xi)σ(−w>xi)
σ(−w>xi)

=
n∑
i=1

xi(yi − ηi)

Thus the gradient vanishes if and only if
∑n
i=1 xi(yi − ηi) = 0. This equation is nonlinear and we

need an iterative optimizationmethod to solve it (see Annex IV. formore details). For this purpose,
we derive the Hessian matrix of `:

H`(w) =
n∑
i=1

xi(0− σ′(w>xi)σ′(−w>xi)x>i ) = −
n∑
i=1

ηi(1− ηi)xix>i = −X> diag(η(1− η))X

We focus on the NEWTON’s algorithm and try to apply it for logistic regression.

The second-order TAYLOR-expansion of the loss function leads to

`(w) = `(wt) + (w− wt)>∇`(wt) + 1
2(w− wt)>H`(wt)(w− wt) + o

( ∥∥∥w− wt∥∥∥2 )

Withh = w−wt and theprevious expressionsof `,∇`andH`, theminimizationproblembecomes:

min
h
h>X>(y − η)− 1

2h
>X> diag(η(1− η))Xh

This leads, according to the method, to set wt+1 = wt +H`(wt)−1∇`(w). The minimization prob-
lem above can be seen as some weighted linear regression over h of some function of the form∑n
i=1

(ỹi−x>i h)2

σ2
i

, where ỹi = yi− ηi and σ2
i = [ηi(1− ηi)]−1. Thus, thismethod is o�en refered as the

iterative reweighted least squares algorithm.
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III. Generativemodels [todo]

This part briefly presents the FISHER linear discriminant also knownas the linear discriminant anal-
ysis. Suppose that we haveX ∈ Rp and Y ∈ {0, 1}. Then by the BAYES formula:

p(Y = 1 |X = x) = p(X = x | Y = 1)p(Y = 1)
p(X = x | Y = 1)p(Y = 1) + p(X = x | Y = 0)p(Y = 0)

The assumption then consists in considering p(X = x |Y = 0) ∼ N (x, µ0,Σ0) and p(X = x |Y =
1) ∼ N (x, µ1,Σ1). FISHER’s assumption is the assumption thatΣ1 = Σ0 = Σ.
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CHAPTER 3

Unsupervised classification

In this chapter we run into a classification problem with more than two classes. We assume that
Y ∈ J1, KK for a fixedK ≥ 2.

� To talkaboutestimationof "hidden"parameters, FrenchspeakingpeopleandEnglish speak-
ing people use di�erent terms which can lead to some confusions. Within a supervised

framework, English people would prefer to use the term "classification" whereas the French use
the term "discrimination". Within an unsupervised context, English people would rather use the
term "clustering", whereas French people would use "classification" or "classification non super-
visée". In the following we will only use the English terms.

Unsupervised learning consists in finding a label prediction function based on unlabeled training
data only. In the case where the learning problem is a classification problem, and under the as-
sumption that the classes form clusters in input space, the problem reduces to a clustering prob-
lem, which consists in finding groups of points that form denser clusters.

When the clusters are assumed to be isotropic the formulation of theK-means algorithm is appro-
priate.

I. K-means

K-means clustering is amethodof vectorquantization. It is analgorithmof alternateminimization
that aims at partitioning n observations intoK clusters in which each observation belongs to the
cluster with the nearest mean, serving as a prototype to the cluster (see Figure 3.1).

I. A. TheK-means algorithm

Wewill use the following notations:

• x1, . . . , xn ∈ Rp are the observations we want to partition intoK clusters,
• µ1, . . . , µK ∈ Rp are themeans: µk is the centerof clusterk. Wewill denoteµ = (µ1, . . . , µK).
• To each xi we associate the indicator variable zi = (1i∈C1 , . . . ,1i∈CK ) where Ck are the in-
dices of points belonging to cluster k. We set z = (z1, . . . , zn).
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Figure 3.1: Clustering on a 2D point data set with 3 clusters [todo]

We also define the distortion as the function J defined by:

J(µ, z) =
n∑
i=1

K∑
k=1

zik ‖xi − µk‖2

The aim of the algorithm is to minimize J . To do so we proceed with an alternating minimization:

Algorithm 1:K-means
Input : x1, . . . , xn, K, µ
Output: µ, z

1 while no convergence do
2 z = argminz J(µ, z)
3 µ = argminµ J(µ, z)
4 end

During the minimization w.r.t. z, we set i ∈ Ck thus zik = 1 if k ∈ argmink′ ‖xi − µk′‖
2
2. In other

words we associate to each xi the cluster with nearest center µk.

During the minimization w.r.t. µ, one can show1 that the new µ is defined by

∀k ∈ J1, KK, µk =
∑n
i=1 zikxi∑n
i=1 zik

=
∑
i∈Ck xi
|Ck|

that is to say each cluster’s center is the average of the points in the cluster.

REMARK I. .1. The step of minimization with respect to z is equivalent to allocating the xi in the
VORONOÏ cells which centers are the (µk)1≤k≤K .

I. B. Convergence and initialization

We can show that this algorithm converges in a finite number of iterations. Therefore the conver-
gence could be local, thus it introduces the problem of initialization.

Random restarts A classic method consists in using random restarts. By choosing several ran-
dom vectors µ, we can compute the algorithm for each case and finally keep the partition which

1by setting to zeros the gradient of J with respect of µ, as∇µk
J = −2

∑n
i=1 zik(xi − µk)
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minimizes the distortion. Thus we hope that at least one of the local minimum is close enough to
a global minimum.

K-means++ One other well knownmethod is theK-means++ algorithm, which aims at correct-
ing a major theoretic shortcomings of the K-means algorithm: the approximation found can be
arbitrarily bad with respect to the objective function compared to the optimal clustering. TheK-
means++ algorithm addresses this obstacles by specifying a procedure to initialize the cluster cen-
ters before proceeding with the standardK-means optimization iterations. With theK-means++
initialization, the algorithm is guaranteed to find a solution that is O(logK) competitive to the
optimalK-means solution.

The intuition behind this approach is that it is a clever thing to well spread out theK initial cluster
centers. At each iteration of the algorithmwe will build a new center. We will repeat the algorithm
until we haveK centers. Here are the steps of the algorithm :

Algorithm 2: Initialization ofK-means++
Input : x1, . . . , xn, K
Output: µ

1 Choose µ1 uniformly among x1, . . . , xn
2 for k ∈ J2, KK do
3 SetDi = mink′<k d(xi, µk′) for i ∈ J1, nK
4 Choose µk as xi with probabilityD2

i /
∑n
i=1D

2
i .

5 end

Wesee thatwehavenowbuiltK vectorswith respect toour first intuitionwhichwas towell-spread
out the centers (because we used a well chosen weighted probability). We can now use those vec-
tors as the initialization of our standardK-means algorithm.

I. C. Choice ofK

The parameterK is an hyperparameter that we need to specify to the algorihm.

It is important to point out that the choice ofK is not universal. Indeed, we see that if we increase
K, the distortion J decreases, until it reaches 0whenK = n, that is to saywhen each data point is
the center of its own center. To address this issue one solution could be to add to J a penalty term
overK. Usually it takes the following form:

J(µ, z,K) =
n∑
i=1

K∑
k=1

zik ‖xi − µk‖2
2 + λK

for an hyperparameter λ > 0which is again arbitrary.

I. D. Other problems

We can also point out thatK-means will work pretty well when the width of the di�erent clusters
are similar, for example if we deal with spheres. But clustering byK-means could also be disap-
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pointing in some cases such as the example given in Figure 3.2.

Figure 3.2: Example whereK-means does not provide a satisfactory clustering result

Using Gaussian mixtures provides a way to avoid this problem (see next part).

II. Expectation Maximization algorithm

The Expectation Maximization algorithm (EM) is an iterative method for finding maximum likeli-
hood estimates of parameters in statistical models, where the models depend on unobserved la-
tent or hidden variables Z. Latent variables are variables that are not directly observed but are
rather inferred from other variables that are observed.

Previous algorithms aimed at estimating the parameter θ that maximized the likelihood of pθ(x),
where x is the vector of observed variables.

In this section we proceed di�erently, by assuming an observation x of a r.v.X (our data) depends
on a second random variable Z with observation z unknown (cluster center for example). Our
model is then the joint density pθ(X,Z) depending on a parameter θ ∈ Θ, and the goal is tomaxi-
mize pθ(x) = ∑

z pθ(x, z).

We can already infer that, because of the sum, the problem should be slightly more di�icult than
before. Indeed, taking the log of our probability would not lead to a simple convex optimization
problem. In the following we will see that EM is a method to solve those kinds of problems.

II. A. An example

Let us present a simple example to illustratewhatwe just said. Theprobability density represented
on Figure 3.3 is akin to an average of two Gaussians. Thus, it is natural to use amixture model and
to introduce a hidden variable z, following a BERNOULLI distribution defining which Gaussian the
point is sampled from.

In this example we have z ∈ {1, 2} and x | z = i ∼ N (µi,Σi). The density p(x) is a convex
combination of normal densities:

p(x) = p(x, z = 1) + p(x, z = 2) = p(x | z = 1)p(z = 1) + p(x | z = 2)p(z = 2)

This is a mixture model. It represents a simple way to model complicated phenomena.
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Figure 3.3: Average of two Gaussian distributions

II. B. Our objective: maximum likelihood

LetD = {(x1, z1), . . . , (xn, zn)} are n i.i.d. observations of the random variable (X,Z). The aim is
tomaximize the incomplete likelihoodor log-likelihood,wherex = (x1, . . . , xn)andz = (z1, . . . , zn):

L(x) =
∑
z

pθ(x, z) =
n∏
i=1

∑
zi

pθ(xi, zi) `(x) = log
(∑

z

pθ(x, z)
)

=
n∑
i=1

log
(∑

zi

pθ(xi, zi)
)

A direct way to solve this problem is for example to do a gradient ascent. EM algorithm will be
another way to do it.

II. C. The EM algorithm

We recall the JENSEN’s inequality:

PROPOSITION II. .1. [JENSEN’S INEQUALITY]
Let f : R −→ R be a convex function andX is an integrable random variable. Then

f(E[X]) ≤ E[f(X)]

In addition, if f is strictly convex, then we have equality if and only ifX is constant a.s..

Let us introduce a nonnegative function q(z) such that∑z q(z) = 1. Using the concavity of log and
JENSEN’s inequality, one has:

`(x) = log
(∑

z

pθ(x, z)
)

= log
(∑

z

(pθ(x, z)
q(z)

)
q(z)

)
≥
∑
z

q(z) log
(pθ(x, z)

q(z)
)

=
∑
z

q(z) log pθ(x, z)−
∑
z

q(z) log q(z) := L(q, θ)

with equality if and only if

∀z, q(z) = pθ(x, z)∑
z′ pθ(x, z′)

= pθ(z | x)
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by strict concavity of log.

We have just proved:

PROPOSITION II. .2. ∀θ ∈ Θ and q, we have:

log pθ(x) ≥ L(q, θ)

with equality if and only if q(z) = pθ(z | x) for all z.

Thuswe have introduced an auxiliary functionL(q, θ) that is always below the function log(pθ(x)).

As withK-means, EM algorithm consists in an alternating minimization:

Algorithm 3: EM
Input : x1, . . . , xn, θ
Output: θ, z

1 while no convergence do
2 q = argmaxq L(q, θ) // E-step
3 θ = argmaxθ L(q, θ) // M-step
4 end
5 z = argmaxz pθ(z | x)

Algorithm properties

• EM is an ascent algorithm, indeed it goes up in term of likelihood (compare to before where
we were descending along the distortion).

• The sequence of log-likelihoods converges to a local maximum because we are dealing here
with a non-convex problem (see the illustration in Figure 3.4).
As it was already the case forK-means, we can reiterate the result in order to be more con-
fident, keeping the result with highest likelihood.

Initialization Because EMgives a localmaximum, it is clever to choose an initial θ relatively close
to the final solution. For Gaussian mixtures, it is quite usual to initiate EM by the output of K-
means, which gives a good initialization in practice, but with a large variance.

In practice: the EM recipe In practice we do at each iteration of the algorithm:

(i) Compute the probability of z | x, pθ(z | x), which corresponds to the new q(z).
(ii) Write the complete log-likelihood `c(x, z) = log(pθ(x, z)).
(iii) E-Step: calculateEZ | X(`c(x, z)) the expected value of the complete log-likelihood function,

with respect to the conditional distribution ofZ |X under the current estimate of the param-
eter θ.

(iv) M-Step: find θ bymaximizingL(q, θ)with respect to θ.
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Figure 3.4: Convergence of the EM algorithm to a local maximum

II. D. Gaussianmixture

In this section we assume (X,Z) is such thatX ∈ Rd and Z ∈ J1, KKwith Z ∼M(1, π1, . . . , πK)
andX |Z = k ∼ N (µk,Σk).

We set θ = (π, µ,Σ) and we want to apply the EM algorithm to this model:

(i) To compute pθ(z | x), we use a BAYES formula:

τi,k(θ) := pθ(zi = k | xi) = pθ(xi | zi = k)pθ(zi = k)
pθ(xi)

= πkϕ(xi, µk,Σk)∑
k′ πk′ϕ(xi, µk′ ,Σk′)

where ϕ(x, µ,Σ) is the density function ofN (µ,Σ) at x:

ϕ(x, µ,Σ) = 1
(2π)d/2

√
det(Σ)

exp
(
− 1

2(x− µ)>Σ−1(x− µ)
)

Suppose we are at iteration t:

(ii) We write the complete log-likelihood of the problem:

`(t)
c (x, z) = log pθ(t)(x, z) =

n∑
i=1

log pθ(t)(xi, zi) =
n∑
i=1

log(pθ(t)(zi)pθ(t)(xi | zi))

=
n∑
i=1

log pθ(t)(zi) + log pθ(t)(xi | zi) =
n∑
i=1

K∑
k=1

[
log(π(t)

k ) + log(ϕ(xi, µ(t)
k ,Σ

(t)
k ))

]
1zi=k

(iii) E-step: we can now write the expectation of the previous quantity with respect to the con-
ditional distribution of Z | X . In fact it is equivalent to replace 1zi=k by pθ(t)(z = k | xi) =
τi,k(θ(t)) = τ

(t)
i,k , as the other terms of the sum are constant from the point of view of the
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conditional probability ofZ |X , and we finally obtain:

f(θ(t)) = EZ | X [`(t)
c (x, z)] =

n∑
i=1

K∑
k=1

[
log(π(t)

k ) + log(ϕ(xi, µ(t)
k ,Σ

(t)
k ))

]
τ

(t)
i,k

(iv) M-step: we need to maximize f w.r.t. θ.
• First wemaximize w.r.t. π.
Maximizing f w.r.t. p corresponds to maximize

∑n
i=1

∑K
k=1 log(π(t)

k )τ (t)
i,k under the con-

straints
∑K
k=1 πk = 1 and πk ≥ 0 for k ∈ J1, KK.

We forget the inequality constraint in a first timeand consider the following Lagrangian:

L(π, λ) =
n∑
i=1

K∑
k=1

log(πk)τ (t)
i,k + λ

(
1−

K∑
k=1

πk
)

One has for all k ∈ J1, KK:

∂L(π, λ)
∂πk

= 1
πk

n∑
i=1

τ
(t)
i,k − λ

Thus∇πL(π, λ) vanishes when πk = 1
λ

∑n
i=1 τ

(t)
i,k for all k ∈ J1, KK, which implies:

λ = λ
K∑
k=1

πk =
K∑
k=1

n∑
i=1

τ
(t)
i,k =

n∑
i=1

K∑
k=1

τ
(t)
i,k︸ ︷︷ ︸

=1

= n

and we deduce that the maximizer π(t+1) is defined by (note that it is a non-negative
vector):

∀k ∈ J1, KK, p
(t+1)
k = 1

n

n∑
i=1

τ
(t)
i,k

• Then we try to maximize w.r.t. to µ. This corresponds to maximize:

L(µ,Σ) = −1
2

n∑
i=1

K∑
k=1

τ
(t)
i,k (xi − µk)>Σ−1

k (xi − µk)

Fixing k ∈ J1, KK, one has using the results of Annex III. :

∇µkL(µ,Σ) =
n∑
i=1

τ
(t)
i,kΣ−1

k (xi − µk)

which vanishes for µk =
∑n

i=1 τ
(t)
i,k
xi∑n

i=1 τ
(t)
i,k

. Thus we have the following expression of µ(t+1):

∀k ∈ J1, KK, µ
(t+1)
k =

∑n
i=1 τ

(t)
i,kxi∑n

i=1 τ
(t)
i,k
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• Finally we canmaximize w.r.t. Σ. We need to maximize ifΛk = Σ−1
k :

L(µ,Λ) =
n∑
i=1

K∑
k=1

τ
(t)
i,k

[1
2 log(det(Λk))−

1
2(xi − µk)>Λk(xi − µk)

]

Fixing k ∈ J1, KK, one has using the results of Annex III. :

∇ΛkL(µ,Λ) =
n∑
i=1

τ
(t)
i,k

[1
2Λ−1

k −
1
2(xi − µk)(xi − µk)>

]

that will be equal to 0 if

Σk =
∑n
i=1 τ

(t)
i,k (xi − µk)(xi − µk)>∑n

i=1 τ
(t)
i,k

Thus we can defineΣ(t+1):

∀k ∈ J1, KK, Σ(t+1)
k =

∑n
i=1 τ

(t)
i,k (xi − µ(t+1)

k )(xi − µ(t+1)
k )>∑n

i=1 τ
(t)
i,k

REMARK II. .1. The M-step corresponds to the estimation of means in K-means.

Possible forms forΣ We can add some constraints on the form of each (Σk)1≤k≤K , depending of
our model assumptions. The most frequent ones are the following:

• isotropic: Σk = σ2
kId: the cluster is a sphere and there is only one parameter,

• diagonal: Σk is a diagonal matrix: the cluster is an ellipse oriented along the axis, there are d
parameters.

• general: we make no assumptions onΣk: the cluster is an ellipse, there are d(d+1)
2 .
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Bayesianmethod

[todo]

I. Introduction

Vocabulary:

• a priori or prior: p (θ)
• likelihood: p (x | θ)
• marginal likelihood:

∫
p (x | θ) p (θ) dθ

• a posteriori or posterior: p (θ | x)

Caricature Bayesian vs Frequentist:

1. the Bayesian is “optimistic”: he thinks that he can come up with good models and obtain a
method by “pulling the Bayesian crank” (basically a high dimensional integral),

2. the frequentist is more “pessimistic” and uses analysis tools.

The Bayesian formulation enables us to introduce the a priori information in the process of esti-
mation. For instance , let’s imagine that we play heads or tails. The Bayesian model is:

Xi ∈ {0, 1}, Xi | θ ∼ Ber(θ), p(xi | θ) = θxi (1− θ)1−xi

the graphical model associated is represented on Figure 4.1.

θ xi
N

Figure 4.1: Graphical model of the biased coin game
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Nowwe can compute the posterior:

p(θ | x1:n) ∝ p(x1:n | θ)p(θ)

then
p(θ | x1:n) = θn1 (1− θ)n−n1 1[0,1](θ) = Beta(α, β)

where n1 = ∑n
i=1 xi is the number of 1, β = n− n1 + 1 and α = n1 + 1.

Question: what is the probability of head on the next flip?

• Frequensist: θ̂ML = n1/n by amaximum likelihood approach.
• Bayesian: p(xn+1 | x1:n) =

∫
p(xn+1 | θ)p(θ | x1:n)dθ, where p(θ | x1:n)dθ is the posterior dis-

tribution. Then,
θ̂B = α

α + β
= n1 + 1

n+ 2
hence,

θ̂B = n1

n

[
n

n+ 2

]
+ 1

2

[ 2
n+ 2

]
= ρnθ̂ML + (1− ρn) θ̂prior

is a convex combination of θ̂ML and θ̂prior. Then we can notice that for n = 0, the quantity
θ̂B = 1

2 whereas θ̂ML is not defined. It underlines the importance of the prior distibution:
– with an “unknown” coin, we’ve got the information a priori : we’ll use the uniform law
for p (θ).

– with a “normal” coin , we’ll use a distribution with an important concentration of mass
around 0,5 for p (θ).

For a Bayesian, o�ering a “limited” estimator, as the maximum likelihood estimator, which
gives a unique value for θ, is not enough because the estimator itself do not translate the in-
herent uncertainty of the learningprocess. Thus, its estimatorwill be thedensity aposteriori,
obtained from the Bayes rule, which is written in continuous notations as:

p (θ | x) = p (x | θ) p (θ)∫
p (x | θ) p (θ) dθ

The Bayesian specifies the uncertainty with distributions that form its estimator, rather than
combining an estimator with confidence intervals.
If the Bayesian is forced to produce a limited estimator, he uses the expectation of the under-
lying quantity under the a posteriori distribution; for instance for θ:

µpost = E [θ |D] = E [θ | x1, x2, . . . , xn] =
∫
θp (θ | x1, x2, . . . , xn) dθ

For more details about Bayesians see subsection IV. and IV. A. in annex.
We then need to show that θ̂ML → θ∗. Its variance is the variance of a Beta law

αβ

(α + β)2 (α + β + 1)
=
(
n1

n

)(
1− n1

n

)
·O

( 1
n

)
= θ̂ML

(
1− θ̂ML

)
O
( 1
n

)
then the posterior covariance vanishes and

θ̂B
a.s.→ θ̂ML

a.s.→ θ∗

where θ∗ is the “true” parameter of the model.
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II. Bernstein von Mises Theorem

It says that if prior puts non-zero mass around the true model θ∗, then posterior asymptotically
concentrate around θ∗ as a Gaussian.

i. Revisiting example Consider repeating several times the experiment above: T coins picked
randomly each flipped n times. (Figure 13.1)

θt x
(t)
i N T

Figure 4.2: Graphical model of the biased coin game repeated T times

As a frequentist, empirical distribution on x1:n will converge (as T →∞) to

p (x1, . . . , xn) =
∫
θ

(
n∏
i=1

p(xi | θ)
)
p(θ)dθ

where p(θ) is the distribution of coins of parameter θ in the jar and ∏n
i=1 p (xi | θ) is the mixture

distribution. Note thatX1, . . . , Xn are NOT independent.

On the other hand, for all π ∈ Sn

p (x1, . . . , xn) = p
(
xπ(1), . . . , xπ(n)

)

III. Exchangeable situations

a. Exchangeablility

The randomvariablesX1,X2, . . . ,Xn areexchangeable if theyhave thesamedistributionasXπ(1),Xπ(2),
. . . ,Xπ(n) for any permutation of indices π ∈ Sn.

b. Infinite Exchangeablility

Thedefinitionnaturallygeneralizes to infinite families (indexedbyN). The randomvariablesX1, X2, . . .
are exchangeable if every finite subfamilyXi1 , . . . , Xin is exchangeable.
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c. de Finetti’s theorem

X1,X2, . . . are infinitely exchangeable, if and only if ∃! p(θ) (on some space Θ) such that

∀n ∈ N, p (x1, x2, . . . , xn) =
∫ (

n∏
i=1

p (xi | θ)
)
p(θ)dθ

d. Why dowe care about exchangeable situations?

The i.i.d. variables are a particular case of the situation of exchangeable variables, that we see
in practice. However when the i.i.d. data are combined with non scalar observations, the di�er-
ent components are no longer independent. In some cases, those components are nonetheless
exchangeable. For instance in a text, words are shown as sequences that are not exchangeable be-
cause of the syntax. But if we forget the order of the words as in the “bag of word”model, then the
components are exchangeable. It’s the basic principle used in the LDAmodel.

e. Multinomial example

LetX | θ ∼Mult(θ, 1)where θ ∈ ∆k i.e.

p(X = l | θ) = θl and
k∑
l=1

θl = 1, 0 ≤ θl ≤ 1.

for that distribution we have,
θ̂ML
l = nl

n

hence if k ≥ n there exists a l such that θ̂ML
l = 0.

In that case this frequentistmodel overfits. In the Bayesianmodel one puts a prior on∆k = Θ, but
which one? A convenient property of prior families is “conjugacy”, introduced below:

i. Conjugacy Consider a family of distribution

F = {p(θ | α) : α ∈ A} .
One says that F is a “conjugate family” for the observation model p(x | θ) if the posterior

p(θ | x, α) = p(x | θ)p(θ | α)
p(x | α)

belongs to the same family F than the prior, i.e.

∃α′ ∈ A s.t p(θ | x, α) = p(θ | α′)

For the multinomial distribution it gives us

p(x1:n | θ) =
n∏
l=1

p(xl | θ) =
n∏
l=1

θnll

so if p(θ) ∝
n∏
l=1

θαll , then p(x1:n | θ) ∝
n∏
l=1

θβll .
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f. Dirichlet Distribution

The Dirichlet distribution is the conjugate of the Multinomial law (see on Wikipédia for more de-
tails).

p (θ1, θ2, . . . , θK) = Γ (α1 + α2 + . . . +αK)
Γ (α1) Γ (α2) . . .Γ (αK)θ

α1−1
1 θα2−1

2 . . . θαK−1
K dµ (θ)

Where µ stands for the uniform measure on ∆K =
{
s ∈ RK |

∑
i si = 1;∀i, si ≥ 0

}
(K-dim sim-

plex).

• E [θl | α1, . . . , αK ],

• V(θl) ≡ O

(
1∑K

j=1 αj

)
,

• If αl = 1 for all l then one gets an uniform distribution,
• if k = 2 one gets the Beta distribution,
• if there exists l such that αl < 1 one gets a∪ shape distribution,
• if αl ≥ 1 for all l, one gets a∩ (unimodal bump).

For the multinomial model, if the we assume that the prior is

p(θ) = Dir(θ | α)

then the posterior is

p(θ | x1:n) ∝
K∏
l=1

θnl+αl−1
l

and the posterior mean is
E [θl | x1:n] = nl + αl

n+
K∑
j=1

αj

for instance with αl = 1 for all l it adds 1, “smoothing” the maximum likelihood estimator.

E [θl | x1:n] = nl + 1
n+K

i. NB One can consider that posterior can be used for prior of next observation. This is the
sequential approach.

IV. Bayesian linear regression

Let us assume that
y = ω>x+ ε (4.1)

where ε ∼ N (0, σ2). Then the observation issue

p(y | x) = N
(
y | ω>x, σ2

)
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Then if we also choose a Gaussian prior on ω.

p(ω) = N
(
ω; 0, In

λ

)
then the posterior is also a Gaussian with the following parameters

• covariance: Σ̂n = λIn + X>X
σ2

• mean: µ̂n = Σ̂−1
n

(
X>

→
y/σ2

)
where

X =


x1
...
xn

 and →
y =


y1
...
yn


the covariance and the mean are the same as the ones for the ridge regressionwith λ̃ = λσ2.

As a Bayesian: compute predictive distribution

p(ynew | xnew, x1:n, y1:n) =
∫
ω
p(ynew | xnew, ω)p(ω | data)dω

= N
(
ynew | µ̂>nxnew, σ

2
predictive

)
where

σ2
predictive(xnew) = σ2 + x>newΣ̂nxnew,

the real number σ comes from the noise model and the second quantity of the right hand side
comes from the posterior covariance.
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CHAPTER 5

Directed and undirected graphical models

You can find a review on probabilities, including independence and conditional independence in
Annex I. , and a review on graphs in Annex V. .

In this lecture, all randomvariables are assumed tobediscrete, inorder to keepnotationsas simple
as possible. All the theory presented generalizes immediately to continuous randomvariables that
have a density by replacing:

• the discrete probability distributions considered in this lecture by densities,
• summations by integration w.r.t. a reference measure (most of the time the LEBESGUE mea-
sure).

Graphical models combine probability and graph theory into an e�icient data structure. We want
to be able to handle probabilistic models of hundreds of variables. For example, assume we are
trying to model the probability of diseases given the symptoms, as shown below:

X1 X2 X3

Xn

. . .

. . .

Diseases

Symptoms

Figure 5.1: Graph representing binary variables which indicate the presence or not of a disease or
symptom

In this example we consider n nodes, each associated to a binary variableXi ∈ {0, 1}, indicating
the presence or absence of a disease or a symptom. The number of joint probability terms would
grow exponentially. For 100 diseases and symptoms, wewould need a table of size 2100 to store all
the possible states. This is clearly intractable. Instead, we will use graphical models to represent
the relationships between nodes.
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I. Directed Graphical Model

Let G = (V,E) be a graph. A directed graphical model, also historically called a "Bayesian net-
work" when the variables are discrete, represents a family of distributions denotedL(G):

L(G) :=
{
p | ∃(fi)1≤i≤n s.t. ∀x, p(x) =

n∏
i=1

fi(xi, xπi)
}

where the (fi)1≤i≤n, called legal factors, satisfy fi ≥ 0 and∑xi fi(xi, xπi) = 1 for all i ∈ J1, nK and
xπi , and we recall that πi stands for the set of parents of the vertex i inG.

I. A. First definitions and properties

LetX1, . . . , Xn be n random variables with joint distribution p(X). Let G = (V,E) be a directed
acyclic graph, with V = [n].
DEFINITION I. .1. [FACTORISATION ING]
We say that p(X) factorizes inG if p(X) ∈ L(G).

We prove the following useful and fundamental property of directed graphical models:

PROPOSITION I. .1. [LEAF MARGINALIZATION]
Suppose that p(X) factorizes inG. Then for any leafa `, we have

p(xV \{`}) =
∏
i 6=`
fi(xi, xπi)

Hence p(XV \{`}) factorizes inG′ the induced graph on V \ {`}.
aa leaf or terminal node of a directed acyclic graph is a node that has no descendant

PROOF Without loss of generality, we can assume that the leaf is indexed by n. Since it is a leaf, we
clearly have that n /∈ πi for all i ∈ J1, n− 1K. We have the following computation:

p(x1, . . . , xn−1) =
∑
xn

p(x1, . . . , xn) =
∑
xn

n−1∏
i=1

fi(xi, xπi)fn(xn, xπn)

=
n−1∏
i=1

fi(xi, xπi)
∑
xn

fn(xn, xπn) =
n−1∏
i=1

fi(xi, xπi)

Note that the new graph G′ obtained by removing a leaf is still a directed acyclic graph. Indeed,
sinceweonly removededges andnodes, if therewas a cycle inG′, the samecyclewouldbepresent
inG, which is not possible sinceG it is directed acyclic graph.

REMARK I. .1. By induction this result shows that in the definition of factorizationwedonot need
to assume that p is a probability distribution. Indeed, if any function p satisfies the factorisation
property then it is a probability distribution, because it is non-negative as a product of non-
negative factors and it sums to 1 by using formula proved by induction.
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LEMMA I. .2. LetA,B,C be three sets of nodes such that C ⊂ B andA ∩ B = ∅. If p(xA | xB)
only depends on (xA, xC) then p(xA | xB) = p(xA | xC).

PROOF Let p(xA | xB) = f(xA, xC) for some function f . Then p(xA, xB) = p(xA | xB)p(xB) =
f(xA, xC)p(xB). By summing over xB\C , we have:

p(xA, xC) =
∑
xB\C

p(xA, xB) = f(xA, xC)
∑
xB\C

p(xB) = f(xA, xC)p(xC)

which proves that p(xA | xC) = f(xA, xC) = p(xA | xB).

Now we try to characterize the factor functions. The following result will imply that if p factorizes
inG, then we have a uniqueness of the factors.

PROPOSITION I. .3. If p(X) ∈ L(G) then fi(xi, xπi) = p(xi | xπi) for all i ∈ J1, nK.

PROOF Assume, without loss of generality, that the nodes are sorted in a topological order1. Con-
sider a node i ∈ V . Since the nodes are in topological order, we can apply the leaf marginalization
n− i times to obtain that

p(x1, . . . , xi) =
∏
j≤i

f(xj, xπj)

Since we also have p(x1, . . . , xi−1) = ∏
j<i f(xj, xπj), we have taking the ratio:

p(xi | x1, . . . , xi−1) = f(xi, xπi)

Since πi ⊂ J1, i− 1K, this entails by the previous lemma that

p(xi | x1, . . . , xi−1) = p(xi | xπi) = f(xi, xπi)

Hence we can give an equivalent definition the factorization over a directed acyclic graph:

PROPOSITION I. .4. p(X) factorizes inG if and only if

∀x, p(x) =
n∏
i=1

p(xi | xπi)

EXAMPLE I. .1.

• [TRIVIAL GRAPHS] Assume E = ∅, i.e. G has no edges. We then have p(x) = ∏n
i=1 p(xi),

implying the random variables X1, . . . , Xn are independent. Thus variables are mutually
independent if they factorize in the empty graph.

• [COMPLETEGRAPHS]Assumenowwehaveacompletegraph2, wehave: p(x) = ∏n
i=1 p(xi |x1, . . . , xi−1),

the so-called "chain rule" which is always true. Every probability distribution factorizes in a
complete graph. Note that there are n! complete graph possible, and that they are all equiv-
alent.

1for any j ∈ J1, nK, we have πj ⊂ J1, j − 1K
2thus with n(n− 1)/2 edges as we need acyclicity for it to be a directed acyclic graph
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• [GRAPHS WITH SEVERAL CONNECTED COMPONENTS] IfG has several connected components
C1, . . . , CK , then one can show that p ∈ L(G) implies p(x) = ∏K

k=1 p(xCk) (exercise). As a
consequence, each connected component can be treated separately.

In the rest of the lecture, we will therefore focus on connected graphs.

I. B. Graphs with three nodes

In this subsection we consider all connected graphs with 3 nodes, except for the complete graph,
which we have already discussed.

• MARKOV chain: the MARKOV chain on 3 nodes is illustrated on Figure 5.2. For this graph we
have

p(X, Y, Z) ∈ L(G) =⇒ (X |= Y ) |Z

Indeed we have:

p(y | z, x) = p(x, y, z)
p(x, z) = p(x, y, z)∑

y′ p(y′, x, z) = p(x)p(z | x)p(y | z)∑
y′ p(x)p(z | x)p(y′ | z) = p(y | z)

thus

p(x, y | z) = p(x, y, z)
p(z) = p(x, y, z)

p(x, z)
p(x, z)
p(z) = p(y | x, z)p(x | z) = p(y | z)p(x | z)

X Y Z

Figure 5.2: Graph of the MARKOV chain on 3 nodes

• Latent cause: it is the type of directed acyclic graph given in Figure 5.3. We show that:

p(X, Y, Z) ∈ L(G) =⇒ (X |= Y ) |Z

Indeed:
p(x, y | z) = p(x, y, z)

p(z) = p(z)p(y | z)p(x | z)
p(z) = p(x | z)p(y | z)

• Explaining away: represented in Figure 5.4, we can show for this type of graph

p(X, Y, Z) ∈ L(G) =⇒ X |= Y

It basically stems from:

p(x, y) =
∑
z

p(x, y, z) = p(x)p(y)
∑
z

p(z | x, y) = p(x)p(y)
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X Y

Z

Figure 5.3: Graph of the common latent cause

X Y

Z

Figure 5.4: Explaining away or v-structure

REMARK I. .2. The word "cause" should here be between quotes and used very carefully, be-
cause the same way that correlation is not causation, conditional dependance is not causation
either! This is however the historical name for this model. The reason why cause is a bad name,
and that latent factor might be better, is that the factorisation properties that are encoded by
graphical models do not in general correspond to the existence of a causal mechanisms, but
only to conditional independence relations.

REMARK I. .3. Ifp factorizes in the latent causegraph, thenp(x, y, z) = p(z)p(x | z)p(y | z), butus-
ingBAYES rule p(z)p(x | z) = p(x)p(z |x) and sowealso have that p(x, y, z) = p(x)p(z |x)p(y | z)
which shows that p is a MARKOV chain, i.e. factorizes in the MARKOV chain graph.

This is an example of basic edge reversal that we will discuss in the next section. Note that we
proceeded by equivalence, which shows that the MARKOV chain graph, the reversed MARKOV
chain graph and the "latent cause" graph are in fact equivalent in the sense that a distribu-
tion that factorizes according to one factorizes according to the others. This is what we will call
MARKOV equivalence.

REMARK I. .4. In the "explaining away" graph, in general (X |= Y ) |Z is not true in the sense that
there exist elements inL(G) such that this statement is violated.
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REMARK I. .5. For a fixed graph, p ∈ L(G) implies that p satisfies some list of (positive) con-
ditional independence statements (CIS). The fact that p ∈ L(G) cannot guarantee that a given
CIS does not hold. This should be obvious because the independent distribution belongs to all
graphical models and satisfies all CIS . . .

It is also important to note that not all lists of CIS correspond to a graph, in the sense that there
are lists of CIS for which there exists no graph such that L(G) is formed exactly of the distribu-
tions which satisfy only the conditional independences that are listed or that are consequences
of the ones listed. In particular there is no graph G on 3 variables such that L(G) contains all
distributions on (X, Y, Z) that satisfyX |= Y , Y |= Z,X |= Z and does not contain distributions
for which any of these statements is violateda.

aremember that pairwise independence does not imply mutual independence: see Remark I. .3

I. C. Inclusion, reversal andmarginalization properties

Inclusion property Here is a quite intuitive proposition about included graphs and their factor-
ization:
PROPOSITION I. .5. IfG = (V,E) andG′ = (V,E ′) then:

E ⊂ E ′ =⇒ L(G) ⊂ L(G′)

PROOF If p(X) ∈ L(G), then p(x) = ∏n
i=1 p(xi | xπi(G)). Since E ⊂ E ′, it is obvious that πi(G) ⊂

πi(G′), and we can define fi(xi, xπi(G′)) = p(xi | xπi(G)). Then p(x) = ∏n
i=1 fi(xi, xπi(G′)) and fi

meets the factorization requirements, which proves that p ∈ L(G′).

The converse of the previous proposition is not true. In particular, di�erent graphs can define the
same set of distributions. We introduce first some new definitions:
DEFINITION I. .2. [MARKOV EQUIVALENCE]
We say that two graphsG andG′ are MARKOV equivalent ifL(G) = L(G′).

PROPOSITION I. .6. [BASIC EDGE REVERSAL]
If G = (V,E) is a directed acyclic graph and if for all (i, j) ∈ E, i has no parents and the only
parent of j is i, then the graph obtained by reversing the edge (i, j) isMARKOV equivalent toG.

PROOF First note that by reversing such an edge no cycle can be created because the cycle would
necessarily contain (j, i) and j has no parent other than i. Using BAYES rule we have

p(xi)p(xj | xi) = p(xj)p(xi | xj)

andwe convert the factorizationw.r.t.G to factorizationw.r.t. the graph obtained by edge reversal.

Informally, the previous result can be reformulated as: an edge reversal that does not remove or
creates any v-structure leads to a graph which is MARKOV equivalent.

When applied to the 3-nodes graphs considered earlier, this property proves that theMARKOV chain
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and the latent cause graph are equivalent. On the other hand, the fact that the explain away graph
has a v-structure is the reason why it is not equivalent to the others.

DEFINITION I. .3. [COVERED EDGE]
An edge (i, j) is said to be covered if πj = πi ∪ {i}.

πi

i j

Figure 5.5: Graph where edge (i, j) is covered

PROPOSITION I. .7. [COVERED EDGE REVERSAL]
LetG = (V,E) be a directed acyclic graph and (i, j) ∈ E a covered edge. LetG′ = (V,E ′)with
E ′ = (E \ {(i, j)}) ∪ {(j, i)}, then G′ is necessarily also a directed acyclic graph and L(G) =
L(G′).

PROOF Exercise.

Marginalization We have proved in Proposition I. .1 that if p(x1, . . . , xn) factorizes inG, the dis-
tribution obtained by marginalizing a leaf i factorizes in the graphG′ induced on V \ {i} byG. A
nice property of the obtained graph is that all the conditional independences between variables
X1, . . . , Xn−1 that were implied by G are still implied by G′: marginalization has lost conditional
independences information aboutXn but not about the rest of the distribution.

Itwouldbenatural to try to generalize this anda legitimatequestion is: ifwemarginalise anode i in
a distribution ofL(G) is there a simple construction of a graphG′ such that themarginalized distri-
bution factorizes inG′ and such that all the CIS that hold inG anddonot involveXi are still implied
by G′. Unfortunately this is not true. Another less ambitious natural question is then: is there an
unique smallest graphG′ such that if p ∈ L(G) then the distribution obtained by marginalizing i
is inL(G′). Unfortunately this is not the case either, as illustrated by the following exemple.

X1

X2

X3

X4

X5

Figure 5.6: MarginalizingX3 would not result in family of distributions that cannot be exactly rep-
resented by a directed graphical model and one can check that there is no unique smallest graph
in which the obtained distribution factorizes
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Conditional independence with the non-descendents In a MARKOV chain, a well known prop-
erty is thatXt is independent of the past givenXt−1. This result generalizes as follows in a directed
graphicalmodel: if p(X) factorizes inG then every single randomvariable is independent from the
set of its non-descendants given its parents.

DEFINITION I. .4. The set of non-descendants of i denoted nd(i) is the set of nodes that are not
descendants of i.

LEMMA I. .8. For a graphG = (V,E) and a node i, there exists a topological order such that all
elements of nd(i) appear before i.

PROOF This is easily proved constructively: we construct the topological order in reverse order.
At each iteration we remove a node among leaves (of the remaining graph) which we add in the
reverse order, and specifically, if some leaves are descendants of i then we remove one of those. If
at any iteration there is no leaf that is adescendantof i, itmeans that all descendants of ihavebeen
removed from the graph. Indeed, if there were some descendants of i le� in the graph, since all
their descendants are descendants of i as well there would exist a leaf nodewhich is a descendant
of i. This procedure thus removes all strict descendants of i first, then i and then only all elements
of nd(i).

With this lemma, we can show our main result:

PROPOSITION I. .9. IfG is a DAG, then:

p(X) ∈ L(G) ⇐⇒ ∀i, (Xi |= Xnd(i)) |Xπi

PROOF

=⇒ Based on the previous lemma we can find an order such that nd(i) = J1, i − 1K. But we
have proven in Proposition I. .4 that p(xi | xπi) = p(xi | x1, . . . , xi−1), which given the order
chosen is also p(xi | x1, . . . , xi−1) = p(xi | xπi , xnd(i)\πi), this proves (Xi |= Xnd(i)\πi) | Xπi ,
what we wanted to show.

⇐= Consider a topological order, Then J1, i − 1K ⊂ nd(i): indeed by contradiction, suppose
j ∈ J1, i−1K and j /∈ nd(i), then it exists a path from i to j, which contradicts the topological
order property as there would be an edge from i to an element of J1, i− 1K.
By the chain rule, we always have p(xV ) = ∏n

i=1 p(xi | x1, . . . xi−1) but by the conditional
independence assumptions p(xi | x1, . . . xi−1) = p(xi | xπi), hence the result by substitution.

I. D. d-separation

Given a graphG andA,B,C three subsets of V , it would be useful to be able to answer the ques-
tion: isXA |= XB |XC true for all p ∈ L(G)? An answer is provided by the concept of d-separation,
or directed separation.

We call a chain a path in the symmetrized graph, i.e. in the graph obtained by ignoring the direc-
tionality of the edges.
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DEFINITION I. .5. [CHAIN]
Let a, b ∈ V . A chain from a to b is a sequence of nodes, say (v1, . . . , vm) such that v1 = a and
vm = b and for all i ∈ J0,m− 1K, we have (vi, vi+1) ∈ E or (vi+1, vi) ∈ E.

AssumeC is an observed set. We want to define a notion of being "blocked" by this set in order to
answer the underlying question above.

vi−1 vi+1

d

Figure 5.7: d-separation: case d ∈ C and v-structure
vi−1 vi+1

d

no descendant inC

Figure 5.8: d-separation: case d /∈ C and v-structure

DEFINITION I. .6. [BLOCKING NODE IN A CHAIN, BLOCKED CHAIN AND d-SEPARATION]

1. A chain from a to b is blocked at vi = d if:
• either d ∈ C and (vi−1, d, vi+1) is not a v-structure,
• or d /∈ C and (vi−1, d, vi+1) is a v-structure and no descendants of d is inC.

2. A chain from a to b is blocked if and only if it is blocked at any node.
3. A andB are said to be d-separated byC if and only if all chains that go from any a ∈ A to
any b ∈ B are blocked.

EXAMPLE I. .2.

• [MARKOV CHAIN] Applying d-separation to the MARKOV chain retrieves the well know results
that the future is independent to the past given the present:

• [HIDDEN MARKOV MODEL]We can apply it as well to the hidden MARKOV chain graph.

I. E. BAYES ball algorithm

Checking whether 2 nodes are d-separated is not always easy. The BAYES ball algorithm is an in-
tuitive "reachability" algorithm to answer this question. Suppose we want to determine if X is
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Figure 5.9: Hidden MARKOV Model

conditionally independent from Z, given Y . The principle of the algorithm is to place initially a
ball on each of the nodes inX , to then let them bounce around according to some rules described
below and to see if any reachesZ. (X |= Z) | Y is true if none reachedZ, but not otherwise.

The rules are as follow for the three canonical graph structures. Note that the balls are allowed to
travel in either direction along the edges of the graph:

• MARKOV chain: balls pass through when we do not observe Y , but are blocked otherwise.

X Y Z X Y Z

Figure 5.10: MARKOV chain rule. Le�: when Y is observed, balls are blocked. Right: when Y is not
observed, balls pass through

• Two children: balls pass through when we do not observe Y , but are blocked otherwise.

X

Y

Z X

Y

Z

Figure 5.11: RulewhenX andZ areY ’s children. Le�: whenY is observed, balls are blocked. Right:
when Y is not observed, balls pass through

• v-structure: balls pass through when we observe Y , but are blocked otherwise.

II. Undirected graphical models

II. A. Definition

LetG = (V,E) be an undirected graph.
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Figure 5.12: v-structure rule. Le�: when Y is not observed, balls are blocked. Right: when Y is
observed, balls pass through

DEFINITION II. .1. [FACTORIZATION IN AN UNDIRECTED GRAPH]
We denote by C the set of cliques ofG. We say that a probability distribution p(X) factorizes in
G and write p ∈ L(G) if exists (ψC)C∈C nonnegative functions such that:

∀x, p(x) = 1
Z

∏
C∈C

ψC(xC) whereZ =
∑
x

∏
C∈C

ψC(xC)

� The functions (ψC)C∈C are not probability distributions like in the directed graphical mod-
els. They are called potentials.

REMARK II. .1. With the normalization byZ of this expression, we see that the functions (ψC)C∈C
are defined up to a multiplicative constant.

REMARK II. .2. We can restrict C to Cmax the set of maximal cliques.

REMARK II. .3. This definition can be extended to any function: f is said to factorize inG if and
only if f(x) = ∏

C∈C ψC(xC) for all x.

II. B. Trivial graphs

Empty graphs We considerG = (V,E)withE = ∅. If p ∈ L(G), then as C = {(} {i} | i ∈ V ):

∀x, p(x) = 1
Z

n∏
i=1

ψi(xi)

thusX1, . . . , Xn are mutually independent.

Complete graphs WeconsiderG = (V,E)withE = V ×V . If p ∈ L(G), then asC = {(} {i} | i ∈
V ):

∀x, p(x) = 1
Z
ψV (xV )

This places no constraints on the distribution ofX1, . . . , Xn.
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1

2 3

4

Figure 5.13: The empty graph

1

2 3

4

Figure 5.14: The complete graph

II. C. Separation and conditional dependence

PROPOSITION II. .1. LetG = (V,E) andG′ = (V,E ′) be two undirected graphs. Then:

E ⊆ E ′ =⇒ L(G) ⊆ L(G′)

PROOF The cliques ofG are included in cliques ofG′.

DEFINITION II. .2. [GLOBAL MARKOV PROPERTY]
We say that p satisfies the global MARKOV property w.r.t. G if and only if for all A,B, S disjoint
subsets of V such thatA andB are separated by S, then (XA |= XB) |XS .

PROPOSITION II. .2. If p ∈ L(G) then p satisfies the globalMARKOV property w.r.t.G.

PROOF We suppose without loss of generality thatA,B, S are a partition of V , as we could other-
wise replaceAandB byA′ = A∪{a ∈ V | a andA are not separated by S}andB′ = V \{S ∪ A′},
which are also separated by S. Then if we can show that (XA′ |= XB′) |XS , then by the decompo-
sition property, we also have that (XA |= XB) |XS , giving the required general case.

We consider C ∈ C. It is not possible to have both C ∩ A 6= ∅ and C ∩ B 6= ∅ as A and B are
separated by S and C is a clique. Thus C ⊂ A ∪ S or C ⊂ B ∪ S (or both if C ⊂ S). LetD be the
set of cliquesC such thatC ⊂ A ∪ S andD′ the set of all other cliques. We have:

∀x, p(x) = 1
Z

∏
C∈D

ψC(xC)
∏
C∈D′

ψC(xC) = f(xA∪S)g(xB∪S)

Thus:
p(xA, xS) = 1

Z
f(xA, xS)

∑
xB

g(xB, xS) =⇒ p(xA | xS) = f(xA, xS)∑
x′A
f(x′A, xS)

and similarly

p(xB | xS) = g(xB, xS)∑
x′B
g(x′A, xS)
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Hence:

p(xA | xS)p(xB | xS) =
1
Z
f(xA, xS)g(xB, xS)

1
Z

∑
x′A
f(x′A, xS)∑x′B

g(x′A, xS) = p(xA, xB, xS)
p(xS) = p(xA, xB | xS)

i.e. (XA |= XB) |XS .

THEOREM II. .3. [HAMMERSLEY-CLIFFORD]
If p(x) > 0 for all x, then p ∈ L(G) if and only if p satisfies the globalMARKOV property.

II. D. Marginalization

As for directed graphical models, we also have a marginalization notion in undirected graphs. It is
slightly di�erent. If p(X) factorizes in G, then p(X1, . . . , Xn−1) factorizes in the graph where the
node n is removed and all neighbors are connected:

PROPOSITION II. .4. Let G = (V,E) be an undirected graph and G′ = (V ′, E ′) be the graph
where n is removed and its neighbors are connected, i.e. . V ′ = V \ {n} andE ′ is obtained from
the setE by first connecting together all the neighbours ofnand then removingn. If p(X) ∈ L(G)
then p(X1, . . . , Xn−1) ∈ L(G′).

Hence undirected graphical models are closed under marginalization as the construction above is
true for any vertex.

We now introduce the notion of MARKOV blanket:
DEFINITION II. .3. [MARKOV BLANKET]
For i ∈ V , the MARKOV blanket ofG is the smallest set of nodes that makesXi independent to
the rest of the graph.

REMARK II. .4. The MARKOV blanket in an undirected graph for i ∈ V is the set of its neighbors.
For a directed graph, it is the union of all parents, all children and parents of children.

II. E. Relation between directed and undirected graphical models

Since now we have seen that many notions developed for directed graph naturally extended to
undirected graphs. The raising question is thus to know whether we can find a theory including
both directed and undirected graphs, in particular, is there a way – for instance by symmetrizing
the directed graph as we have done repeatedly – to find a general equivalence between those two
notions. The answer is no, aswewill discuss, though itmightwork in some special cases described
above.

Let G be directed acyclic graph. Can we find G′ an undirected graph such that L(G) = L(G′)?
L(G) ⊂ L(G′)?
DEFINITION II. .4. [SYMMETRIZED GRAPH]
The symmetrized graph of G is G̃ = (V, Ẽ), with Ẽ = {(u, v), (v, u) | (u, v) ∈ E}, i.e. an edge
going the opposite direction is added for every edge inE.
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DEFINITION II. .5. [MORALIZED GRAPH]
Themoralized graphG ofG is the symmetrized graph where we add edges such that for all v ∈
V , πv is a clique.

We admit the following proposition:

PROPOSITION II. .5. AssumeG has no v-structure, thenG = G̃ andL(G) = L(G̃) = L(G).

In case there is a v-structure in the graph, we still have:

PROPOSITION II. .6. We haveL(G) ⊂ L(G).

REMARK II. .5. G is minimal for the number of edges in the setH of undirected graphs such that
L(G) ⊂ L(H)

� Notall conditional independencestructure for randomvariables canbe factorized inagraph-
ical model (directed or undirected).

Directed graphical model Undirected graphical model
Factorization p(x) = ∏n

i=1 p(xi | xπi) p(x) = 1
Z

∏
C∈C ψC(xC)

Set independence d-separation separation
(xi |= xnd(i)) | xπi (andmanymore) (XA |= XB) |XS

Marginalization not closed in general, closed
only whenmarginalizing leaf nodes

Di�erence grid 1

2 3

4 v-structure 1

2

3

Figure 5.15: Review of the di�erent notions in both the directed and undirected graphical models
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Information Theory

DEFINITION . .1. [ENTROPY]
Let X be a random variable taking values in the finite set X , with distribution p. For x ∈ X ,
the quantity I(x) = log 1

p(x) is called self-information and the entropy of X is defined as the
expectation of I(X):

H(X) = E[I(X)] = −
∑
x∈X

p(x) log p(x)

with convention 0 log 0 = 0.

REMARK . .1.

• I(x) can be interpreted as a quantity of information carried by the occurrence of x.H(X)
is then the expected amount of information of the random variableX .

• The base of the logarithm is the natural base. We can also use base 2, which can be more
consistent with bit coding interpretations of entropy. In this coursewewill use the natural
logarithm, but note that all entropies are proportional.

DEFINITION . .2. [KULLBACK-LEIBLER DIVERGENCE]
Let p, q be two finite distributions on X . The KULLBACK-LEIBLER divergence between p and q is
defined by

D(p || q) =
∑
x∈X

p(x) log p(x)
q(x) = Ep

[
log p(X)

q(X)
]

= Eq
[p(X)
q(X) log p(X)

q(X)
]

� Note that the KULLBACK-LEIBLER divergence is not a distance as it is not symmetric.

PROPOSITION . .1. We haveD(p || q) ≥ 0 and equality holds if and only if p = q.

PROOF If there exists x ∈ X such that q(x) = 0 and p(x) 6= 0 thenD(p || q) = +∞. Otherwise, we
can without loss of generality assume that q > 0 everywhere.

By convexity of the y 7−→ y log y, we have by JENSEN’s inequality:

D(p || q) = Eq
[p(X)
q(X) log p(X)

q(X)
]
≥ Eq

[p(X)
q(X)

]
logEq

[p(X)
q(X)

]
= 0

MVA 2019/2020 Probabilistic Graphical Models Page 47 of 122



CHAPTER 6 – INFORMATION THEORY

sinceEq
[
p(X)
q(X)

]
= ∑

x∈X
p(x)
q(x)q(x) = ∑

x∈X p(x) = 1.

Furthermore, by strict convexityD(p || q) = 0 if and only if p/q is constant almost surely. As p and
q are two probability distributions, it implies that p = q.

PROPOSITION . .2. We have the following inequalities:

(i) H(X) ≥ 0with equality ifX is constant almost surely,
(ii) H(X) ≤ log(card(X )).

PROOF

(i) Since for all x ∈ X , p(x) = Pp(X = x) ≤ 1 then −p(x) log p(x) ≥ 0, which implies that
H(X) ≥ 0with equality if and only if−p(x) log p(x) = 0 for all x ∈ X , which proves the first
point.

(ii) We have for all distribution q

0 ≤ D(p || q) = −
[ ∑
x∈X

p(x) log q(x)−
∑
x∈X

p(x) log p(x)
]

= −
∑
x∈X

p(x) log q(x)−H(X)

Thus H(X) ≤ −∑x∈X p(x) log q(x) and taking for q the uniform distribution over X , we
obtain

H(X) ≤
∑
x∈X

p(x) log(card(X )) = log(card(X ))

DEFINITION . .3. [MUTUAL INFORMATION]
LetX, Y be two random variables of joint distribution pX,Y and with marginal distributions pX
and pY a. The mutual information ofX and Y is defined by

I(X, Y ) = D(pX,Y || pXpY ) =
∑
x,y

pX,Y (x, y) log pX,Y (x, y)
pX(x)pY (y)

awe recall that pX(x) =
∑
y pX,Y (x, y) and pY (y) =

∑
x pX,Y (x, y)

From Proposition . .1 it directly follows that:

PROPOSITION . .3. I(X, Y ) = 0 if and only ifX |= Y .

� In general we know that independence implies non correlation but the converse is not true!
The first implication comes from the fact that if X |= Y then E[XY ] = E[X]E[Y ]. For the

reverse implication, we have the following counter-example: ifΘ ∼ U([0, 1]) andX = sin(2πΘ),
Y = cos(2πΘ) thenX and Y are not correlated but dependent.

Note that in the case of Gaussian vectors the converse is also satisfied.

RelationbetweenminimumKULLBACK-LEIBLERdivergenceandmaximumlikelihoodprinciple
Let x1, . . . , xn ∈ X be n i.i.d. observations ofX .
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DEFINITION . .4. [EMPIRICAL DISTRIBUTION]
The empirical distribution ofX derived from the sample x1, . . . , xn is the distribution p̂ defined
by:

∀x ∈ X , p̂(x) = 1
n

n∑
i=1

δx,xi

where δa,b = 1a=b.

LetPΘ = {pθ | θ ∈ Θ} be a statistical model.

PROPOSITION . .4. Maximizing the likelihood pθ(x) is equivalent to minimizing the KULLBACK-
LEIBLER divergenceD(p̂ || pθ).

PROOF One has:

D(p̂ || pθ) =
∑
x∈X

p̂(x) log p̂(x)
pθ(x) = −H(p̂)−

∑
x∈X

p̂(x) log pθ(x)

= −H(p̂)− 1
n

∑
x∈X

n∑
i=1

δx,xi log pθ(x) = −H(p̂)− 1
n

n∑
i=1

log pθ(xi)

The second term is equal to the opposite of the log-likelihood. Hence the conclusion.

REMARK . .2. If pθ(x) = 0 then p̂(x) = 0 but the converse is not true. So we should not try to
computeD(pθ || p̂) because this would rule out all the values of x that we have not encountered
yet (i.e. such that p̂(x) = 0).

Maximum entropy principle The maximum entropy principle is a di�erent principle than the
maximum likelihood principle and solves a di�erent kind of problem. It assumes that we use the
data to specify a constraint on the possible distribution we choose.

The idea is to maximize the entropy H(p) under the constraint that p ∈ P(X ) a set of possible
distribution typically specified from the data.

Let us consider the following examples:

EXAMPLE . .1.

• A study on kangaroos estimated that p = 3/4 of the kangaroos are le�-handed and q =
2/3 drink Foster beer. What is a reasonable estimate of the fraction of kangaroos that are
both le�-handed and drink Foster beer? The maximum entropy principle can be invoked to
choose among all distributions of pairs of binary random variables. In particular, one way
to formalize that we want to choose the least specific distribution that satisfies these con-
straints is to find the distribution with maximal entropy that satisfies the constraints on the
marginals.
If X is the indicator variable of being le�-handed and Y the indicator variable of drinking
Foster beer, then the problem is formalized as:

maxpX,Y H(pX,Y )
s.t. pX,Y (1, 0) + pX,Y (1, 1) = p

pX,Y (0, 1) + pX,Y (1, 1) = q
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What is the solution to this problem? (exercise)
• Among all distributions on J1, 10K what is the distribution with expected value equal to 2
which has the largest entropy? (exercise)

• It is possible to show that the distribution onRwith fixedmean µ and fixed variance σ2 that
has maximal di�erential entropy is the Gaussian distribution.

• The principle of maximum entropy is also the principle invoked to construct distribution on
angles with fixedmean and variance. It leads to the so-calledwrapped normal distribution. A
related distribution on angle which is also amaximum entropy distribution is the VON MISES
distribution.

The maximum entropy principle is used o�en when working with contingency tables.

Entropy and KULLBACK-LEIBLER divergence for continuous random variables LetX be a con-
tinuous random variable taking its values in the continuous space X and let p be its probability
density function. We have the following adapted expressions of entropy and KULLBACK-LEIBLER
divergence:

DEFINITION . .5. [ENTROPY AND KULLBACK-LEIBLER DIVERGENCE, CONTINUOUS CASE] Let p, q
be two probability density functions.

• The di�erential entropy of p is defined as:

Hdi�(p) = −
∫
X
p(x) log(p(x))dµ(x)

• The di�erential KULLBACK-LEIBLER divergence is defined as:

Ddi�(p || q) =
∫
X
p(x) log p(x)

q(x)dµ(x) = EX∼p
[

log p(X)
q(X)

]

� In the continuous case, the entropy can be negative!

REMARK . .3. Note that the definition of Hdi�(p) depends on the reference measure µ. This
means thatHdi�(p) does not capture any intrinsic properties of p anymore, and loses its "physi-
cal interpretation" in terms of quantity of information, at least in an absolute sense. By contrast
Ddi�(p || q)does not dependon the choice of the referencemeasure andhas therefore a stronger
interpretation.
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Exponential families

I. Generalities

Let x1, . . . , xn ∈ X be n i.i.d. observations of a random variableX .

DEFINITION I. .1. [STATISTIC]
A statisticΦ is just a function of the data x1, . . . , xn 7−→ Φ(x1, ..., xN).

DEFINITION I. .2. [SUFFICIENT STATISTICa]
T is a su�icient statistic for a statistical model PΘ if for all θ ∈ Θ there exists some function h
and g such that:

∀x, pθ(x) = h(x)g(T (x), θ)

astatistique exhaustive in french

A su�icient statistic T (x) carries all the information that is relevant to estimate θ from data x using
the maximum likelihood principle.

Another way of interpreting what a su�icient statistic is is to take the Bayesian point of view. In
Bayesian statistics, the parameter θ is modelled as a random variable and we then have:

p(x, θ) = p(x | θ)p(θ) = h(x)g(T (x), θ)p(θ)

which means that θ |= X | T (X).

Let Θ be an open subset of Rd and PΘ a family of distributions taking values in a same space X .
Let µ be a fixed measure onX .
DEFINITION I. .3. [EXPONENTIAL FAMILY]
PΘ is an exponential family if each distribution pθ ∈ PΘ admits a density w.r.t. µ of the form

∀x ∈ X , pθ(x) = h(x) exp
(
b(θ)>φ(x)− Ã(θ)

)
dµ(x)

where h is the ancillary statistic, hµ the reference or base measure, φ the su�icient statistic,
also called feature vector, η = b(θ) the canonical parameter and Ã(θ) = A(η) the log-partition
function.
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PROPOSITION I. .1. [EXPRESSION OF THE log-PARTITION FUNCTION]
One has:

A(η) = log
∫
X
h(x) exp

(
η>φ(x)

)
dµ(x)

PROOF It su�ices to write that:

1 =
∫
X
pθ(x)dµ(x) = e−A(η)

∫
X
h(x) exp

(
η>φ(x)

)
dµ(x)

DEFINITION I. .4. [CANONICAL EXPONENTIAL FAMILY]
A canonical exponential family is an exponential family which such that η = b(θ) = θ, i.e. :

∀x ∈ X , pη(x) = h(x) exp
(
η>φ(x)− A(η)

)

DEFINITION I. .5. [DOMAIN]
The domain of an exponential family is defined asΩ = {η ∈ Rp |A(η) < +∞}.

EXAMPLE I. .1. [MULTINOMIAL MODEL]
LetX bea randomvariable onX =

{
(0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}K

}
following amultinomial dis-

tribution of parameter π. Then we have the following density function w.r.t. the countingmeasure
ν:

∀x ∈ X , pπ(x) =
K∏
k=1

πxkk = exp
( K∑
k=1

xk log πk
)

= exp
( K∑
k=1

xkη̃k

)
= exp(η̃>x)

where η̃ = (log π1, . . . , log πK)>. We are close to identify an exponential family with h = 1, φ = id
and η = η̃, but we cannot identifyA(η). Using Proposition I. .1, we have:

A(η) = log
( ∑
x∈X

exp(η>x)
)

= log
( K∑
k=1

exp(ηk)
)

and if the family is an exponential family with h = 1 and φ = idwe can write:

pπ(x) = exp
( K∑
k=1

xkηk − A(η)
)

= exp
( K∑
k=1

(ηk − A(η))xk
)

= exp
( K∑
k=1

log
( exp ηk∑K

k′=1 exp ηk′
)
xk
)

With the above expression we identify η is defined as satisfying πk = exp ηk∑K

k′=1 exp ηk′
for all k.

In fact the first expression was showing that we had an exponential family, with η = η̃ we have
A(η) = 0.

The di�erencewith this new expression is thatwe now take into account the fact that
∑K
k=1 πk = 1.

Thiswas a hidden constraint on η̃. Adding theA(η) gives a newexpressionwith nomore constraint
over the values that η can take.

EXAMPLE I. .2. [GAUSSIAN DISTRIBUTION OVERR]
We have:

∀x ∈ R, pµ,σ2(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
= exp

(−1
2σ2x

2 + µ

σ2x−
[ µ2

2σ2 + 1
2 log(2πσ2)

])
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and we recognize an exponential family on the domain: {η ∈ R2, η2 < 0}where:

φ(x) = (x, x2)> η =
( µ
σ2 ,−

1
2σ2

)>
A(η) = 1

2 log
(
− 2π

2η2

)
− η2

1
4η2

EXAMPLE I. .3. Many other commondistributions are exponential families. For instance binomial,
POISSON (X = N), DIRICHLET, Gamma and exponential laws.

DEFINITION I. .6. [CURVED EXPONENTIAL FAMILY]
An exponential family is said to be curved if its Jacobian

(
∂bj
∂θi

(θ)
)
i,j
is not full rank for all θ ∈ Θ.

EXAMPLE I. .4. One can check thatPΘ = {N (µ, µ2) | µ > 0} is a curved exponential family.

II. Link with the graphical models

EXAMPLE II. .1. [ISING MODEL]

Xi Xj

Figure 7.1: ISING model

The ISING model is a model of variables n variables taking values in {0, 1} and linked by the graph
G = ([n], E) of Figure ??. A probability distribution of this model is under the following form:

∀x ∈ {0, 1}n , pη(x) = 1
Z(η) exp

( ∑
(i,j)∈E

ψηij(xi, xj)
)

where η = (V kk′
ij )(i,j)∈E,k,k′∈{0,1} and each ψij has the following expression1:

ψij(xi, xj) = V 11
ij xixj + V 10

ij xi(1− xj) + V 01
ij (1− xi)xj + V 00

ij (1− xi)(1− xj)

1we omit the η to avoid heavy notations
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It is easy to see that this is an exponential family for which we have

φ(x) = (xixj, xi(1− xj), (1− xi)xj, (1− xi)(1− xj))>(i,j)∈E

In fact the above expression is overparametrized and we can rewrite the model with just one pa-
rameter per node and one per edge under the form:

∀x ∈ {0, 1}n , pη̃(x) = 1
Z(η̃)

∏
i∈V

eη̃ixi
∏

(i,j)∈E
eη̃ijxixj

EXAMPLE II. .2. [GENERAL DISCRETE GRAPHICAL MODEL]
In the general case of a discrete graphical model such that p > 0 onX , we have:

p(x) = 1
Z

∏
c∈C

Ψc(xc) = 1
Z

exp
(∑
c∈C

log Ψc(xc)
)

= 1
Z

exp
(∑
c∈C

∑
yc∈Xc

δyc,xc log Ψc(yc)
)

where Xc is the set of all possible values of the random variable on the clique c. We identify an
exponential family with

φ(x) = (δxc,yc)c∈C,yc∈Xc and η = (log Ψc(yc))c∈C,yc∈Xc

III. Minimal representation

LetPΘ be an exponential family.

REMARK III. .1. The set Nη = {x ∈ X | pη(x) = 0} actually does not depend on η but only on
h(x)!

In the following we denote byN = {x | h(x) = 0} the common set of probability zero.
DEFINITION III. .1. [AFFINELY DEPENDENT STATISTICS]
We denote φ(x) = (φ1(x), . . . , φK(x))>. The su�icient statistics are said to be a�inely depen-
dent if:

∃(c0, . . . , cK) 6= 0K+1, ∀x /∈ N , c0 +
K∑
k=1

ckφk(x) = 0

DEFINITION III. .2. [MINIMAL REPRESENTATION OF AN EXPONENTIAL FAMILY]
Avector of su�icient statistics provides aminimal representationof the exponential family these
statistics are a�inely independent.

THEOREM III. .1. Every exponential family admits at least one minimal representation (not nec-
essarily unique) of uniqueminimal dimensionK.

REMARK III. .2. In practice we will quite o�en use redundant (i.e. not minimal) representations.
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IV. Exponential family of an i.i.d. sample

We consider an i.i.d. sampleX1, . . . , Xn of distribution pη which belongs to an exponential family.
Then:

pη(x1, . . . , xn) =
n∏
i=1

pη(xi) =
n∏
i=1

h(xi) exp
(
η>φ(xi)−A(η)

)
=

n∏
i=1

h(xi) exp
(
η>
( n∑
i=1

φ(xi)
)
−nA(η)

)

Thus the distribution of our sample belongs to an exponential family with

• su�icient statistics nφwhere φ(x) = 1
n

∑n
i=1 φ(xi),

• canonical parameter and domain unchanged,
• log-partition function nA(η).

V. Convexity and di�erentiability in exponential families

We recall the HÖLDER’s inequality:

LEMMA V. .1. [HÖLDER’S INEQUALITY]
Let p ∈ [1,+∞] and µ ameasure onRd. Then for all f, g : Rd −→ R, one has:∫

|f(x)g(x)| dµ(x) ≤
( ∫
|f(x)|p dx

) 1
p
( ∫
|g(x)|q dx

) 1
q

where q is such that 1
p

+ 1
q

= 1.

THEOREM V. .2. [CONVEXITY PROPERTIES IN AN EXPONENTIAL FAMILIY]
In a canonical exponential family, we have the following properties:

(i) The domainΩ is a convex subset ofRd,
(ii) Z : η 7−→

∫
h(x) exp(η>φ(x))dx is a convex function,

(iii) Z is log-convex function, i.e.A = log(Z) is convex.

PROOF

• Let us prove (i) and (ii) together. IfΩ = ∅, the result is trivial.
If not, let η = αη1 + (1− α)η2 where η1, η2 ∈ Ω and α ∈ [0, 1]. By convexity we have:

exp(η>φ(x)) ≤ α exp(η>1 φ(x)) + (1− α) exp(η>2 φ(x))

Thus:∫
h(x) exp(η>φ(x))dµ(x) ≤ α

∫
h(x) exp(η>1 φ(x))dµ(x)+(1−α)

∫
h(x) exp(η>2 φ(x))dµ(x)

which is exactly Z(η) ≤ αZ(η1) + (1 − α)Z(η2). Thus Z is convex and as η1, η2 ∈ Ω, we
obtainZ(η) < +∞, and thus η ∈ Ω. SoΩ is convex.

• To prove (iii), let η = αη1 + (1− α)η2 where η1, η2 ∈ Ω and α ∈ [0, 1]. We can write:

Z(η) =
∫
h(x) exp(η>φ(x))dµ(x) =

∫
[h(x) exp(η>1 φ(x))]α︸ ︷︷ ︸

f(x)

[h(x) exp(η>2 φ(x))]1−α︸ ︷︷ ︸
g(x)

dµ(x)
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Applying HÖLDER’s inequality with p = 1/α ≥ 1, we obtain:

Z(η) ≤
( ∫

f(x)pdµ(x)
) 1
p
( ∫

g(x)qdµ(x)
) 1
q

=
( ∫

h(x) exp(η>1 φ(x))]αdµ(x)
)α(

h(x) exp(η>2 φ(x))]αdµ(x)
)1−α

= Z(η1)αZ(η2)1−α

andZ is log-convex.

Thus in a canonical exponential family, themaximum likelihood estimator is the solution of a con-
vex optimization problem! Indeed the log-likelihood is concave:

`(η) = log pη(x) = log h(x) + nη>φ(x)− nA(η)

� The theorem does not hold in any of those two cases: if the family is curve or if φ is not fully
observed and we consider the marginal likelihood of the observations.

THEOREM V. .3. If η ∈
◦
Ω , thenZ andA are C∞ and:

∀m1, . . . ,mK ∈ N,
∂mZ

∂ηm1
1 . . . ∂ηmKK

(η) = Eη[φ1(x)m1 . . . φK(x)mK ]Z(η)

PROOF It is a bit technical but standard to show using the dominated convergence theorem that
one can exchange di�erentiation and expectation in the computations of the di�erentials of Z.
One then has for a fixed k ∈ J1, KK:

∂Z

∂ηk
(η) =

∫
φk(x)h(x) exp(η>φ(x))dµ(x)

=
∫
φk(x)h(x) exp(η>φ(x)− A(η))dµ(x) exp(A(η))

= Eη[φk(x)]Z(η)

and we obtain the general formula by induction.

VI. Momentmethods

VI. A. Moment vector
DEFINITION VI. .1. [MOMENT VECTOR]
We define the moment vector (or moment parameter) as:

µ(η) = ∇A(η) = Eη[φ(X)]

PROOF We have:

∇A(η) =
∫
X h(x)φ(x) exp

(
η>φ(x)

)
dµ(x)∫

X h(x) exp
(
η>φ(x)

)
dµ(x)

=
∫
X
h(x)φ(x) exp

(
η>φ(x)−A(η)

)
dµ(x) = Eη[φ(X)]
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EXAMPLE VI. .1.

• For a BERNOULLI distribution, we can write:

p(x) = πx(1− π)1−x = exp(x log π − x log(1− π) + log(1− π) = exη−A(η)

where η = log( π
1−π ) andA(η) = − log(1− π).

From this we get that π(1− π) eη and thus π = σ(η)where σ is the sigmoid function2. More-
over, we can writeA(η) = − log(1− π) = log(1 + eη) and the moment vector is:

µ(η) = Eη[φ(X)] = Eη[X] = π

• In themultinomial casewe considerZ ∼M(1, π)withZ ∈ {0, 1}K . We haveφ(Z) = Z and
the moment vector is:

µ(η) = π

• In the Gaussian model we have φ(X) = (X,X2)> and we obtain:

µ(η) = (µ, σ2 + µ2)>

VI. B. Hessian ofA
PROPOSITION VI. .1. The hessian ofA is the covariance matrix of the su�icient statistic:

∇2A(η) = E[(φ(X)− µ(η))(φ(X)− µ(η))>] = Cov(φ(X))

PROOF We can write:

∇2A(η) = ∇∇A(η) = ∇
(∇Z(η)
Z(η)

)
= ∇

2Z(η)
Z(η) +∇Z(η)

(
−∇Z(η)
Z(η)2

)>
= ∇

2Z(η)
Z(η) +∇Z(η)

Z(η)
(
−∇Z(η)

Z(η)
)>

Moreover remark that ∇Z(η)
Z(η) = µ(η) and that:

(∇2Z(η))k,k′ = E[φk(X)φk′(X)]Z(η) ∇2Z(η) = E[φ(X)φ(X)>]Z(η)

And consequently:

∇2A(η) = E[φ(X)φ(X)>]− µ(η)µ(η)> = E[(φ(X)− µ(η))(φ(X)− µ(η))>] = Cov(φ(X))

COROLLARY VI. .1. We have the following properties:

(i) ∇2A(η) is semi-definite positive,
(ii) A is convex,
(iii) A is strictly convex on

◦
Ω if and only if φ(X) is a minimal representation of the exponential

family.
2remark that in logistic regression we have η = w>x
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PROOF

(i) One has:

∀c ∈ RK , c>∇2A(η)c = E[c>(φ(X)− µ(η))(φ(X)− µ(η))>c] = E
[ ∥∥∥c>(φ(X)

∥∥∥2 ]
≥ 0

(ii) It directly follows from (i).
(iii) IfA is not strictly convex, then there exists η and c ∈ RK such that c>∇2A(η)c = 0 therefore,

for all x ∈ X ,Var(c>φ(x)) = 0 thus c>φ(x) = −c0 a.s.. We can thus write

∀x ∈ X , c0 + c1φ1(x) + · · ·+ cKφK(x) = 0

Since we can go backward, we have the equivalence.

VI. C. log-likelihood of an exponential function

With the context and notations of section IV. , we have

−`(η) = −nη>φ+ nA(η) and −∇`(η) = −nφ+ nµ(η)

Consequently we have the following equivalence:

∇`(η) = 0 ⇐⇒ µ(η) = φ

THEOREM VI. .2. [MOMENT MATCHING]
Themaximum likelihood estimator η is such that φ(x) = µ(η).

REMARK VI. .1.
η

inference
�

learning
µ(η) = φ

VI. D. Link betweenmaximum likelihood andmaximum entropy

Themaximumentropyprinciple canbeapplied: wewant to find thedistributionp such thatEp[φ(X)] =
φ and has maximal entropy. We can write this as a convex optimization problem:

minp −H(p)
subject to Ep[φ(X)] = φ, p ≥ 0, ∑

x p(x) = 1

Let us introduce the Lagrangian of this problem, forgetting in a first time the non-negativity of p:

L(p, λ, ν) =
∑
x

p(x) log p(x)− λ
(∑

x

p(x)φ(x)− φ
)

+ ν
(∑

x

p(x)− 1
)
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Since the problem is convex, we have strong duality3.

Without loss of generality, we can hence assume that p > 0 and that themoment condition holds.
The gradient of the Lagrangian w.r.t. p is given by:

∇pL(p, λ, ν) = log p+ 1− λφ+ c

and we have:

∇pL(p, λ, ν) = 0 ⇐⇒ ∀x, log p(x) = λφ(x)−(c+1) ⇐⇒ ∀x, p(x) = e−(c+1) eλ>φ(x)

We recognize here an exponential family. Reinjecting this value of p andmaximizing w.r.t. λ and c,
we obtain the maximum likelihood estimator.

We have shown:
THEOREM VI. .3. IfX1, . . . , Xn is an i.i.d. sample and φ(X) the su�icient statistic, then the max-
imum entropy estimator satisfying Ep[φ(X)] = φ is the maximum likelihood distribution in the
exponential family with su�icient statistic φ.

VI. E. Gaussian graphical models

We considerX ∼ N (µ,Σ) ∈ Rp.

Canonical parameterization Denoting η = Σ−1µ andΛ = Σ−1, we get:

∀x ∈ Rp, (x− µ)>Λ(x− µ) = x>Λx− 2η>x+ η>Ση

fromwhich we deduce:

∀x ∈ Rp, pµ,Λ(x) = exp
(
η>x− 1

2x
>Λx− A(η,Λ)

)
where

A(η,Λ) = 1
2η
>Λ−1η + p

2 log(2π)− 1
2 log(det(Λ))

θ = (Λ, η)are the canonical parameters. Λ is called theprecisionmatrix, and η is the loading vector.
We have the following su�icient statistic, which is not a minimal representation:

φ(x) =
(
x,−1

2xx
>
)>

Themoment of the model is:

∇θA(η,Λ) = Eθ[φ(X)] =
(
Eθ[X],−1

2E[XX>]
)

3SLATER’s condition corresponds to the existence of p in the relative interior of the domain of the function that is in
R|X |+∗ and such that

∑
x p(x) = 1. If we do not find such a p then we can reduce our set takenX ′ = X \ {x | p(x) = 0}
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where:
Eθ[X] = ∇ηA(η,Λ) = Λ−1η = µ

and
−1

2E[XX>] = ∇ΛA(η,Λ) = −1
2Λ−1ηη>Λ−1− 1

2Λ−1 = −1
2[µµ> + Λ−1]

Computing the covariance ofX we get:

Covθ(X) = Eθ[XX>]− Eθ[X]Eθ[X]> = Λ−1 = Σ

REMARKVI. .2. Wecouldhavealsocomputed thecovariancewithΛ−1 = ∇2
ηA(η, λ) = Covθ(XX>).

Conditioning and marginalization We partition the random variableX ∈ Rp into two compo-

nentsX1 ∈ Rp1 andX2 ∈ Rp2 such thatX =
(
X1
X2

)
and p = p1 + p2. We now seek to determine

the law ofX1 andX2 |X1

Before doing so, we need to partition the moment parameters µ,Σ and the canonical parameters
Λ, η in the same way:

µ =
(
µ1
µ2

)
Σ =

(
Σ11 Σ12
Σ21 Σ22

)
η =

(
η1
η2

)
and Λ = Σ−1 =

(
Λ11 Λ12
Λ21 Λ22

)

fromwhich we get a partitioned form for the joint distribution:

∀x1, x2, pµ,Σ(x1, x2) = 1√
(2π)p det(Σ)

exp
(
− 1

2

(
x1 − µ1
x2 − µ2

)>
Λ
(
x1 − µ1
x2 − µ2

))

In Annex VII. , we introduce a tool to block diagonalize partitioned matrices. This allows us to de-
velop general formulas for marginalization and conditioning in the multivariate Gaussian setting.

Using the WOODBURY-SHERMAN-MORRISON formula, we compute an interesting expression for the
quadratic form of the multivariate Gaussian distribution:

(x− µ)>Λ(x− µ) =
(
x1 − µ1
x2 − µ2

)>
Σ−1

(
x1 − µ1
x2 − µ2

)

=
(
x1 − µ1
x2 − µ2

)> (
I −Σ−1

11 Σ12
0 I

)(
Σ−1

11 0
0 [Σ/Σ11 ]−1

)(
I 0

−Σ21Σ−1
11 I

)(
x1 − µ1
x2 − µ2

)
= (x1 − µ1)>Σ−1

11 (x1 − µ1) + (x2 − µ2 − b)>[Σ/Σ11 ]−1(x2 − µ2 − b)

where we denote b = Σ21Σ−1
11 (x1 − µ1).

Now recall that det(Σ) = det(Σ11) det([Σ/Σ11 ]), the joint distribution can be expressed as:

pµ,Σ(x1, x2) = 1√
(2π)p1 det(Σ11)

e− 1
2 (x1−µ1)>Σ−1

11 (x1−µ1)

︸ ︷︷ ︸
p(x1)

1√
(2π)p2 det([Σ/Σ11 ])

e− 1
2 (x2−µ2−b)>[Σ/Σ11 ]−1(x2−µ2−b)

︸ ︷︷ ︸
p(x2 | x1)
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fromwhich we deduce that:

X1 ∼ N (µ1,Σ11) and X2 |X1 ∼ N (µ2 + Σ21Σ−1
11 (X1 − µ1), [Σ/Σ11 ])

DenotingX1 ∼ N (µ1,Σ1) andX2 |X1 ∼ N (µ2 | 1,Σ2 | 1)4, we can then parametrize the canonical
parameters:

η1 = [Λ/Λ22 ]µ1 = η2 − Λ12Λ−1
22 η2 Λ1 = Σ−1

11 = [Λ/Λ22 ] = Λ11 − Λ12Λ−1
22 Λ21

Λ22 | 1 = Λ22 η2 | 1 = Λ22 | 1µ2 | 1 = Λ22µ2 − Λ21(x1 − µ1) = η2 − Λ21x1

We can notice that in the moment parameterization, the marginalization operation is simple and
the conditioning is complicated and the opposite holds in the canonical parameterization.

Zeros of the precision matrix and MARKOV properties Let p(X1, . . . , Xp) a joint Gaussian dis-
tribution. We denote I = {i, j} for fixed i < j and we consider p(xI | xIc). Using the canonical
parameterization:

ηI | Ic =
(
ηi − ΛiIcxIc
ηj − ΛjIcxIc

)
and ΛII | Ic = ΛII =

(
Λii Λij

Λji Λjj

)

and we have the following expression for the covariance ofXI |XIc :

Cov(XI |XIc) = ΣII | Ic = Λ−1
II | Ic = 1

det(ΛII)

(
Λjj −Λji

−Λij Λii

)

HenceCov(Xi, Xj |XIc)
[?]= − Λij√

ΛiiΛjj
andΛij = 0 implies that (Xi |= Xj) |XIc .

PROPOSITION VI. .4. The non zero coe�icients inΛ correspond to edges in the underlying graph-
ical model.

Indeed thedistribution isproportional to exp(η>x−1
2x
>Λx) = ∏

1≤i≤p exp(ηixi)
∏

1≤i,j≤p exp(−1
2xiΛijxj).

4nota thatΣ2 | 1 = Σ22 − Σ21Σ−1
11 Σ12
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Sum-product algorithm

I. Motivations

Inference, along with estimation and decoding, are the three key operations one must be able to
perform e�iciently in graphical models.

Given a discrete GIBBS model of the form:

p(x) = 1
Z

∏
C∈C

ψC(xC)

where C is the set of cliques of the graph, inference enables computation of:

• the marginal p(xi) for a fixed i or more generally p(xC),
• the partition functionZ,
• the conditional marginal p(xi | xj, xk).

and as a consequence computation of:

• the gradient in a exponential family,
• the expected valueof the log-likelihoodof anexponential family at stepEof theEMalgorithm
(for example for a hidden MARKOV model).

A first example: the ISING model We consider the ISING model and denote by G = (V,E) the
associated graph, with |V | = n. LetX = (Xi)i∈V be a vector of random variables, taking value in
{0, 1}n, of which the exponential form of the distribution is:

∀x ∈ {0, 1}n , p(x) = e−A(η) ∏
i∈V

eηixi
∏

(i,j)∈E
eηijxixj

The log-likelihood is then:

`(η) =
∑
i∈V

ηixi +
∑

(i,j)∈E
ηijxixj − A(η)

We can therefore take as su�icient statistic:

φ(x) = ((xi)i∈V , (xixj)(i,j)∈E)>
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But we have seen that for exponential families:

`(η) = φ(x)>η − A(η) and ∇η`(η) = φ(x)− Eη[φ(X)]

We therefore need to computeEη[φ(X)]. In our case, we get:

∀i ∈ V, Eη[Xi] = pη(Xi = 1) and ∀(i, j) ∈ E, Eη[XiXj] = pη(Xi = 1, Xj = 1)

This is one of the motivations for solving the problem of inference: in order to be able to compute
the gradient of the log-likelihood, we need to know the marginal laws.

Another example: the POTTS model Let (Xi)i∈V be random variables such thatXi takes values
in J1, KiK. Denoting∆ik = 1Xi=k and δik = 1xi=k, the POTTS model is such that

pη(δ) = exp
(∑
i∈V

Ki∑
k=1

ηikδik +
∑

(i,j)∈E

Ki∑
k=1

Kj∑
k′=1

ηijkk′δikδjk′ − A(η)
)

This is an exponential family with su�icient statistic φ(δ) = ((δik)i,k, (δikδjk′)i,j,k,k′)>. Then we
have:

Eη[∆ik] = pη[Xi = k] and Eη[∆ik∆jk′ ] = pη[Xi = k,Xj = k′]

Those two examples illustrate the need to perform inference.

� But a main problem is that in general the inference problem is NP-hard!

How to deal with this problem depends on the kind of graphs:

• for trees, the inference problem is e�icient as it is linear in n,
• for "tree-like" graphs, we use the Junction Tree Algorithmwhich enables us to bring the situ-
ation back to that of a tree,

• for the general case, we are forced to carry out approximative inference.

II. Inference on a chain

Weconsider the followinggraphicalmodelwhere (Xi)i∈V are randomvariableswithV = [n] taking
values in J1, KK, with joint distribution defined as:

p(x) = 1
Z

n∏
i=1

ψi(xi)
n∏
i=2

ψi−1,i(xi−1, xi)

We wish to compute p(xj) for a certain j ∈ J1, nK. The naive solution would be to compute the
marginal with the greedy formula

p(xj) =
∑

xV \{j}

p(x1, . . . , xn)
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Unfortunately, this type of calculation is of complexityO(Kn).

We therefore develop the expression1:

p(xj) = 1
Z

∑
xV \{j}

n∏
i=1

ψi(xi)
n∏
i=2

ψi−1,i(xi−1, xi)

= 1
Z

∑
xV \{j}

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)ψn(xn)ψn−1,n(xn−1, xn)

= 1
Z

∑
xV \{j,n}

∑
xn

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)ψn(xn)ψn−1,n(xn−1, xn)

= 1
Z

∑
xV \{j,n}

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)
∑
xn

ψn(xn)ψn−1,n(xn−1, xn)

which allows us to bring out the messaged passed by node n to node n− 1:

µn→n−1(xn−1) =
∑
xn

ψn(xn)ψn−1,n(xn−1, xn)

When continuing, we obtain by induction:

p(xj) = 1
Z

∑
x1,...,xj−1

j∏
i=1

ψi(xi)
j∏
i=2

ψi−1,i(xi−1, xi)µj+1→j(xj)

where we have the following definitions of the descending messages, for i ∈ J1, n− 1K

µi+1→i(xi) =
∑
xi+1

ψi+1(xi+1)ψi,i+1(xi, xi+1)µi+2→i+1(xi+1)

with convention µn+1→n = 1.

We can do the samemethod in an ascending way, by defining the messages for i ∈ J1, n− 1K

µi→i+1(xi+1) =
∑
xi

ψi(xi)ψi,i+1(xi, xi+1)µi−1→i(xi)

with convention µ0→1 = 1. Finally we obtain:

p(xj) = 1
Z
µj−1→j(xj)ψj(xj)µj+1→j(xj)

Eachof themessages is computedwithcomplexityO((n−1)K2), andwith those2(n−1)messages
calculated, one can easily compute p(xj) for all j and xj . We also obtainZ by summing:

Z =
∑
xj

p(xj) =
∑
xj

µj−1→j(xj)ψj(xj)µj+1→j(xj)

1if j < n
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III. Inference in undirected trees

We consider the following general joint probability:

p(x) = 1
Z

∏
i∈V

ψi(xi)
∏

(i,j)∈E
ψi,j(xi, xj)

We note i the vertice for which we want to compute the marginal law p(xi). We set i to be the
root of our tree. For all j ∈ V , we note Cj and Dj respectively the set of children and the set of
descendants of j.

For a tree with at least two vertices, we define by recurence if j ∈ Ci:

F (xi, xj, xDj) = ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

F (xj, xk, xDk)

where F (xj, xk, xDk) = 1 ifDk = ∅.

Then by reformulating the marginal:

p(xi) = 1
Z

∑
xV \{i}

ψi(xi)
∏
j∈Ci

F (xi, xj, xDj)

= 1
Z
ψi(xi)

∏
j∈Ci

∑
xj ,xDj

F (xi, xj, xDj)

= 1
Z
ψi(xi)

∏
j∈Ci

∑
xj ,xDj

ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

F (xj, xk, xDk)

= 1
Z
ψi(xi)

∏
j∈Ci

∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

∑
xk,xDk

F (xj, xk, xDk)︸ ︷︷ ︸
µk→j(xj)

= 1
Z
ψi(xi)

∏
j∈Ci

∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

µk→j(xj)︸ ︷︷ ︸
µj→i(xi)

which leads us to the recurrence relation for the Sum Product Algorithm (SPA): if j ∈ Ci

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

µk→j(xj)
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IV. Sum Product Algorithm (SPA)

IV. A. Sequential SPA for a rooted tree

We deduce the following algorithm:

Algorithm 4: Sum Product Algorithm for a rooted tree
Input :G, (ψi)i, (ψi,j)i,j , root i, xi
Output: p(xi)

1 for all leaf ` do
2 Sendmessage µ`→π`(xπ`) = ∑

x` ψ`(x`)ψ`,π`(x`, xπ`) for all xπ`
3 end
4 while i did not receive all messages from its children do
5 for all node k ∈ [n] such that k has received all messages from its children do
6 Sendmessage µk→πk(xπk) for all xπk
7 end
8 end
9 Compute p(xi) = 1

Z
ψi(xi)

∏
j∈Ci µj→i(xi)

This algorithmonlyenablesus tocomputep(xi)at the root. Tobeable tocomputeall themarginals
(as well as the conditional marginals), onemust not only collect all the messages from the leafs to
the root, but then also distribute them back to the leafs. In fact, the algorithm can then be written
independently from the choice of a root.

IV. B. SPA for an undirected tree

The case of undirected trees is slightly di�erent:

Algorithm 5: Sum Product Algorithm for an undirected tree
Input :G, (ψi)i, (ψi,j)i,j , node i0, xi0
Output: p(xi0)

1 for all leaf ` do
2 Sendmessage µ`→π`(xπ`) for all xπ`
3 end
4 while at least one edge has not been used to transmit a message do
5 for all node j ∈ [n] such that j has not send amessage to one of its neighbors, say i, and

has receivedmessages from all its other neighbors do
6 Send µj→i(xi) = ∑

xj ψi,j(xi, xj)ψj(xj)
∏
k∈N (j)\{i} µk→j(xj) for all xi

7 end
8 end
9 Compute p(xi0) = [???]
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IV. C. Parallel SPA (flooding) [todo]

1. Initialise the messages randomly

2. At each step, each node sends a newmessage to each of its neighbours, using themessages
received at the previous step.

IV. D. Marginal laws

Once all messages have been passed, we can easily calculate all the marginal laws

∀ i ∈ V, p(xi) = 1
Z
ψi(xi)

∏
k∈N (i)

µk→i(xi) (8.1)

∀ (i, j) ∈ E, p(xi, xj) = 1
Z
ψi(xi) ψj(xj) ψj,i(xi, xi)

∏
k∈N (i)\j

µk→i(xi)
∏

k∈N (j)\i
µk→j(xj) (8.2)

IV. E. Conditional probabilities

We can use a clever notation to calculate the conditional probabilities. Suppose that we want to
compute

p(xi | x5 = 3, x10 = 2) ∝ p(xi, x5 = 3, x10 = 2)

We can set
ψ̃5(x5) = ψ5(x5) δ(x5, 3)

Generally speaking, if we observeXj = xj0 for j ∈ Jobs, we can define the modified potentials:

ψ̃j(xj) = ψj(xj) δ(xj, xj0)

such that
p(x |XJobs = xJobs0) = 1

Z̃

∏
i∈V

ψ̃i(xi)
∏

(i,j)∈E
ψi,j(xi, xj) (8.3)

Indeed we have

p(x |XJobs = xJobs0) p(XJobs = xJobs0) = p(x)
∏
j∈Jobs

δ(xj, xj0) (8.4)

so that by dividing the equality by p(XJobs = xJobs0) we obtain the previous equation with Z̃ =
Zp(XJobs = xJobs0).

We then simply apply the SPA to these new potentials to compute themarginal laws p(xi |XJobs =
xJobs0)
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V. Remarks

• TheSPA is also calledbelief propagationormessagepassing. On trees, it is an exact inference
algorithm.

• If G is not a tree, the algorithm doesn’t converge in general to the right marginal laws, but
sometimes gives reasonable approximations. We then refer to “Loopy belief propagation",
which is still o�en used in real life.

• The only property that we have used to construct the algorithm is the fact that (R,+,×) is a
semi-ring. It is interesting tonotice that thesamecan thereforealsobedonewith (R+,max,×)
and (R,max,+).
Example For (R+,max,×) we define the Max-Product algorithm, also called “Viterbi algo-

rithm" which enables us to solve the decoding problem, namely to compute the most
probable configuartionof the variables, given fixedparameters, thanks to themessages

µj→i(xi) = max
xj

[
ψi,j(xi, xj)ψj(xj)

∏
xk

µk→j(xj)
]

(8.5)

If we run the Max-Product algorithm with respect to a chosen root, the collection phase of
the messages to the root enables us to compute the maximal probability over all configura-
tions, and if at each calculation of a message we have also kept the argmax, we can perform
a distribution phase, which instead of propagating the messages, will consist of recursively
calculating one of the configurations which will reach the maximum.

• In practice, wemay beworking on such small values that the computerwill return errors. For

instance, for k binary variables, the joint law p(x1, x2...xn) = 1
2n can take infinitesimal values

for a large k. The solution is to work with logarithms: if p = ∑
i pi, by setting ai = log(pi)we

have:

log(p) = log
[∑

i

eai
]

log(p) = a∗i + log
[∑

i

e(ai−a∗i )
]

(8.6)

With a∗i = maxi ai. Using logarithms ensures a numerical stability.

VI. Proof of the algorithm

We are going to prove that the SPA is correct by recurrence. In the case of two nodes, we have:

p(x1, x2) = 1
Z
ψ1(xi)ψ2(x2)ψ1,2(x1, x2)

Wemarginalize, and we obtain

p(x1) = 1
Z
ψ1(x1)

∑
x2

ψ1,2(x1, x2)ψ2(x2)︸ ︷︷ ︸
µ2→1(x1)
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We can hence deduct
p(x1) = 1

Z
ψ1(x1)µ2→1(x1)

And
p(x2) = 1

Z
ψ2(x2)µ1→2(x2)

We assume that the result is true for trees of size n − 1, and we consider a tree of size n. Without
loss of generality, we can assume that the nodes are numbered, so that the n−th be a leaf, and we
will call πn its parent (which is unique, the graph being a tree). The first message to be passed is:

µn→πn(xπn) =
∑
xn

ψn(xn)ψn,πn(xn, xπn) (8.7)

And the last message to be passed is:

µπn→n(xn) =
∑
xπn

ψπn(xπn)ψn,πn(xn, xπn)
∏

k∈N (πn)\{n}
µk→πn(xπn) (8.8)

We are going to construct a tree T̃ of size n − 1, as well as a family of potentials, such that the
2(n − 2)messages passed in T (i.e. all the messages except for the first and the last) be equal to
the 2(n− 2)messages passed in T̃ . We define the tree and the potentials as follows:

• T̃ = (Ṽ , Ẽ)with Ṽ = {1, . . . , n−1} and Ẽ = E\{n, πn} (i.e., it is the subtree corresponding
to the n− 1 first vertices).

• The potentials are all the same as those of T , except for the potential

ψ̃πn(xπn) = ψπn(xπn)µn→πn(xπn) (8.9)

• The root is unchanged, and the topological order is also kept.

We then obtain two important properties:

1) The product of the potentials of the tree of size n− 1 is equal to:

p̃(x1, . . . , xn−1) = 1
Z

∏
i 6=n,πn

ψi(xi)
∏

(i,j)∈E\{n,πn}
ψi,j(xi, xj)ψ̃πn(xπn)

= 1
Z

∏
i 6=n,πn

ψi(xi)
∏

(i,j)∈E\{n,πn}
ψi,j(xi, xj)

∑
xn

ψn(xn)ψπn(xπn)ψn,πn(xn, xπn)

=
∑
xn

1
Z

n∏
i=1

ψi(xi)
∏

(i,j)∈E
ψi,j(xi, xj)

=
∑
xn

p(x1, . . . , xn−1, xn)

which shows that these new potentials define on (X1, . . . , Xn−1) exactly the distribution induced
by pwhenmarginalizingXn.
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2) All of themessages passed in T̃ correspond to themessages passed in T (except for the first and
the last).

Now, with the recurrence hypothesis that the SPA is true for trees of size n − 1, we are going to
show that it is true for trees of size n. For nodes i 6= n, πn, the result is obvious, as all messages
passed are the same:

∀ i ∈ V \ {n, πn}, p(xi) = 1
Z
ψi(xi)

∏
k∈N (i)

µk→i(xi) (8.10)

For the case i = πn, we deduct:

p(xπn) = 1
Z
ψ̃πn(xπn)

∏
k∈Ñ (πn)

µk→πn(xπn) ( product over the neighbours of πn in T̃ )

= 1
Z
ψ̃πn(xπn)

∏
k∈N (πn)\{n}

µk→πn(xπn)

= 1
Z
ψπn(xπn)µn→πn(xπn)

∏
k∈N (πn)\{n}

µk→πn(xπn)

= 1
Z
ψπn(xπn)

∏
k∈N (πn)

µk→πn(xπn)

For the case i = n, we have:

p(xn, xπn) =
∑

xV \{n,πn}

p(x) = ψn(xn)ψπn(xπn)ψn,πn(xn, xπn)
∑

xV \{n,πn}

p(x)
ψn(xn)ψπn(xπn)ψn,πn(xn, xπn)︸ ︷︷ ︸

α(xπn )

Therefore:

p(xn, xπn) = ψπn(xπn)α(xπn)ψn(xn)ψn,πn(xn, xπn) (8.11)

Consequently:

p(xπn) = ψπn(xπn)α(xπn)
∑
xn

ψn(xn)ψn,πn(xn, xπn)︸ ︷︷ ︸
µn→πn (xπn )

Hence:
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α(xπn) = p(xπn)
ψπn(xπn)µn→πn(xπn) (8.12)

By using (7.31), (7.32) and the previous result, we deduct that:

p(xn, xπn) = ψπn(xπn)ψn(xn)ψn,πn(xn, xπn) p(xπn)
ψπn(xπn)µn→πn(xπn)

= ψπn(xπn)ψn(xn)ψn,πn(xn, xπn)
1
Z
ψπn(xπn)∏k∈N (πn) µk→πn(xπn)

ψπn(xπn)µn→πn(xπn)

= 1
Z
ψπn(xπn)ψn(xn)ψn,πn(xn, xπn)

∏
k∈N (πn)\{n}

µk→πn(xπn)

By summing with respect to xπn , we get the result for p(xn):

p(xn) =
∑
xπn

p(xn, xπn) = 1
Z
ψn(xn)µπn→n(xn)

VI. A. Proposition:

Let p ∈ L(G), forG = (V,E) a tree, then we have:

p(x1, . . . , xn) = 1
Z

∏
i∈V

ψ(xi)
∏

(i,j)∈E

p(xi, xj)
p(xi)p(xj)

(8.13)

Proof: we prove it by reccurence. The case n = 1 is trivial. Then, assuming that n is a leaf, and we
canwritep(x1, . . . , xn) = p(x1, . . . , xn−1)p(xn |xπn). Butmultiplyingbyp(xn |xπn) = p(xn,xπn )

p(xn)p(xπn )p(xn)
boils down to adding the edge potential for (n, πn) and the node potential for the leaf n. The for-
mula is hence verified by reccurence.

VI. B. Junction tree

Junction tree is an algorithm designed to tackle the problem of inference on general graphs. The
idea is to look at a general graph from far away, where it can be seen as a tree. By merging nodes,
one will hopefully be able to build a tree. When this is not the case, one can also think of adding
some edges to the graph (i.e., cast the present distribution into a larger set) to be able to build such
a graph.

The trap is that if one collapses toomany nodes, the number of possibles values will explode, and
as such the complexity of the whole algorithm. The tree width is the smallest possible clique size.
For instance, for a 2D regular grid with n points, the tree width is equal to

√
n.

MVA 2019/2020 Probabilistic Graphical Models Page 72 of 122



CHAPTER 9

Hidden MARKOV Model

The Hidden MARKOV Model1 is one of the most used graphical models.

We consider z0, z1, . . . , zT states corresponding to latent variables and y0, y1, . . . , yT states corre-
sponding to observed variables. The model assume that:

• (zt)0≤t≤T is a MARKOV chain (hence the name of the model),
• each zt takesK possible values, denoted by J1, KK,
• z0 follows a multinomial distributionM(1, π0),
• the transition probabilities are homogeneous: p(zt = k | zt−1 = k′) does not depend on t.
We denote byA the transition matrix,

• the emission probabilities p(yt | zt) are homogeneous, i.e. p(yt | zt) = f(yt, zt),
• The joint probability distribution function can be written as:

p(z0, . . . , zT , y0, . . . , yT ) = p(z0)
T−1∏
t=0

p(zt+1 | zt)
T∏
t=0

p(yt | zt)

Wewant to perform di�erent tasks that on this model:

• filtering: compute p(zt | y1, . . . , yt−1),
• smoothing: compute p(zt | y1, . . . , yT ),
• decoding: findmaxz0,...,zT p(z0, . . . , zT | y0, . . . , yT ).

All these tasks can be performed with a sum-product or max-product algorithm.

I. Sum-product

From now on, we note the observations y = {y1, . . . , yT}. The distribution on yt simply becomes
the delta function δyt,yt .

To use the sum-product algorithm, we define zT as the root, i.e. we send all forward messages to
zT and go back a�erwards.

1modèle de MARKOV caché in french
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Forward We compute the following messages:

∀t ∈ J0, T K, µyt→zt(zt) =
∑
yt

δyt=ytp(yt | zt) = p(yt | zt)

and recursively:

µz−1→z0(z0) = p(z0) and ∀t ∈ J0, T−1K, µzt→zt+1(zt+1) =
∑
zt

p(zt+1 |zt)µzt−1→zt(zt)µyt→zt(zt)

With those messages we will be able to compute some conditional probabilities. Indeed let us
introduce the "α-message":

∀t ∈ J0, T K, αt(zt) = µyt→zt(zt)µzt−1→zt(zt)

Wehave the followingproperty, due to thedefinition of themessages: αt(zt) represents amarginal
of the distribution corresponding to the sub-HMM {z0, . . . , zt}:

PROPOSITION I. .1. We have:

∀t ∈ J0, T K, αt(zt) = p(zt, y0, . . . , yt)

PROOF It is easy to obtain the following recursion formule for the α-messages:

∀t ∈ J0, T − 1K, αt+1(zt+1) = p(yt+1 | zt+1)
∑
zt

p(zt+1 | zt)αt(zt)

Note that the result is true for t = 0. Thus by induction, we have if αt(zt) = p(zt, y0, . . . , yt) for
some t ∈ J0, T − 1K:

αt+1(zt+1) = p(yt+1 | zt+1)
∑
zt

p(zt+1 | zt)αt(zt) by α-recursion

=
∑
zt

p(yt+1 | zt+1, zt, y0, . . . , yt)p(zt+1 | zt, y0, . . . , yt)p(zt, y0, . . . , yt) by independences

=
∑
zt

p(zt+1, zt, y0, . . . , yt+1) by chain rule

= p(zt+1, y0, . . . , yt+1)

Backward We compute recursively the following messages:

µzT+1→zT (zT ) = 1 and ∀t ∈ J1, T K, µzt→zt−1(zt−1) =
∑
zt

p(zt |zt−1)µzt+1→zt(zt)µyt→zt(zt)

Defining the "β-message”:

∀t ∈ J0, T K, βt(zt) = µzt+1→zt(zt)

we have:
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PROPOSITION I. .2.
∀t ∈ J0, T K, βt(zt) = p(yt+1, . . . , yT | zt)

PROOF Use the recursion formula:

∀t ∈ J0, T − 1K, βt(zt) =
∑
zt+1

p(zt+1 | zt)p(yt+1 | zt+1)βt+1(zt+1)

Using both α and β messages allow to compute several quantities:

PROPOSITION I. .3. For all t ∈ J0, T K, we have:

p(zt, y0, . . . , yT ) = αt(zt)βt(zt)

fromwhich we can easily deduce:

p(y0, . . . , yT ) =
∑
zt

αt(zt)βt(zt) and p(zt | y0, . . . , yT ) = αt(zt)βt(zt)∑
zt αt(zt)βt(zt)

We also have for t ∈ J0, T − 1K:

p(zt, zt+1 | y0, . . . , yT ) = 1
p(y0, . . . , yT )αt(zt)βt+1(zt+1)p(zt+1 | zt)p(yt+1 | zt+1)

� Implementation is not di�icult, but requires to avoid errors in the indices! Also, in order to
prevent numerical errors, it is better to code them using log-probabilities.

II. EM algorithm

With the previous notations and assumptions, we write the complete log-likelihood `c(θ)where θ
is the vector of parameters of the model2:

`c(θ) = log
(
p(z0)

T−1∏
t=0

p(zt+1 | zt)
T∏
t=0

p(yt | zt)
)

= log p(z0) +
T−1∑
t=0

log p(zt+1 | zt) +
T∑
t=0

log p(yt | zt)

=
K∑
k=1

δz0,k log(π0)k +
T−1∑
t=0

K∑
k,k′=1

δzt+1,kδzt,k′ logAk,k′ +
T∑
t=0

K∑
k=1

δzt,k log f(yt, zt)

When applying EM algorithm to estimate the parameters of this HMM, we use JENSEN’s inequality
to obtain a lower bound on the log-likelihood:

log p(y0, . . . , yT ) ≥ Eq[log p(z0, . . . , zT , y0, . . . , yT )] = Eq[`c(θ)]
2containing π0, A but also parameters for f
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At step i, we use q defined by q(z0, . . . , zT ) = pθ(i)(z0, . . . , zT | y0, . . . , yT ). Thus the E-step consists
in replacing the δ values in the log-likelihood expression by their expectation. For instance δz0,k is
replaced by pθ(i)(z0 = k | y).

For the M-step, we maximize the obtained expression w.r.t. θ in the usual manner to obtain a new
estimator θi+1. The key is that everythingwill decouple, thusmaximizing is simple and canbedone
in closed form.

Addressing practical implementation issues

Sinceαt and βt are respectively joint probabilities of t+ 1 and T − t variables they tend to become
exponentially small respectively for t large and t small. A naive implementation of the forward-
backward algorithm therefore typically leads to rounding errors. It is therefore necessary to work
on a logarithmic scale.

So when considering operations on quantities say a1, . . . , an whose logarithms are `i = log(ai),
the log of the product is easily computed as `Π = log∏i ai = ∑

i `i and the log of the sum can be
computedwith the smallest amount of numerical errors by factoring the largest element. Precisely
if i∗ = argmaxi ai and `∗ = log ai∗ then:

`Σ = log
∑
i

ai = log
∑
i

exp(`i) = log
(

exp(`∗)
∑
i

exp(`i− `∗)
)

= `∗+ log
(

1 +
∑
i 6=i∗

exp(`i− `∗)
)

which provides a stable way of computing the logarithm of the sum.

For hidden MARKOV models, remember that the max-product algorithm3 allows to compute the
most probable sequence for hidden states.

3a.k.a. VITERBI algorithm
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Back to classification

[todo]

I. Principal Component Analysis (PCA)

Framework: x1, . . . , xN ∈ Rd

Goal: put points on a closest a�ine subspace

a. Analysis view

Findw ∈ Rd such thatVar(xTw) is maximal, with | |w | | = 1

With centered data, i.e. 1
N

∑N
n=1 xn = 0, the empirical variance is:

V̂ar(xTw) = 1
N

N∑
n=1

(xTnw)2 = 1
N
wT (XTX)w

where X ∈ RN×d is the design matrix. In this case: w is the eigenvector of XTX with largest
eigenvalue. It is not obvious a priori that this is the direction we care about.
If more than one direction is required, one can use deflation:

1. Findw

2. Project xn onto the orthogonal ofVect(w)

3. Start again

b. Synthesis view

minw
∑N
n=1 d(xn, {wTx = 0})2 withw ∈ RD, | |w | | = 1.

Advantage: if one wants more than 1 dimension, replace {wTx = 0} by any subspace.
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c. Probabilistic approach: Factor Analysis

Model:

• Λ = (λ1, . . . , λK) ∈ Rd×k

• X ∈ Rk ∼ N (0, I)
• ε ∼ N (0,Ψ), ε ∈ Rd independent fromX withΨ diagonal.
• Y ∈ Rd: Y = ΛX + µ+ ε

We have Y |X ∼ N (ΛX + µ,Ψ).
Problem: getX | Y .

(X, Y ) is a Gaussian vector onRd+k which satisfies:

• E[X] = 0 = µX
• E[Y ] = E[ΛX + µ+ ε]µ = µY
• ΣXX = I
• ΣXY = Cov(X,ΛX + µ+ ε) = Cov(X,ΛX) = ΛT

• ΣY Y = Var(ΛX + ε,ΛX + ε) = Var(ΛX,ΛX) + Var(ε, ε) = ΛΛT + Ψ

Thanks to the results we know on exponential families, we know how to computeX | Y :

E[X | Y = y] = µX + ΣXY Σ−1
Y Y (y − µY )

Cov[X | Y = y] = ΣXX − ΣXY Σ−1
Y Y ΣY X

In our case, we therefore have:

E[X | Y = y] = ΛT (ΛΛT + Ψ)−1(y − µ)
Cov[X | Y = y] = I − ΛT (ΛΛT + Ψ)−1ΛT

To apply EM, one needs to write down the complete log-likelihood.

log p(X, Y )α− 1
2X

TX − 1
2(Y − ΛX − µ)TΨ−1(Y − ΛX − µ)− 1

2 log det Ψ

Trap: E[XXT | Y ] 6= Cov(X | Y )
Rather,E[XXT | Y ] = Cov(X | Y ) + E[X | Y ]E[X | Y ]T

REMARK I. .1.

• Cov(X) = ΛΛT +Ψ: our parameters are not identifiable,Λ← ΛRwithR a rotation gives
the same results (in other words, a subspace has di�erent orthonormal bases).

• Why do we care ?

1. A probabilistic interpretation allows to model in a finer way the problem.

2. It is very flexible and therefore allows to combine multiple models.

II. Multiclass classification

We return briefly to classification tomention two simple yet classical and useful models for multi-
class classification: the naiveBayesmodel and themulticlass logistic regression. We consider clas-
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sification problemswhere the input data is inX = Rp and the output variable is a binary indicator
inY = {y ∈ {0, 1}K | y1 + . . .+ yK = 1}.

II. A. Naive Bayes classifier

The naive Bayes classifier is relevant whenmodeling the joint distribution of p(x | y) is too compli-
cated. Wewill present it the special casewhere the input data is a vector of binary randomvariable.
X i : Ω 7→ {0, 1}p

A practical example of classification problem in this setting is the problem of classification of doc-
uments based on a bag of word representation. In the bag-of-word approach, a document is rep-
resented as a long binary vector which indicates for each word of a reference dictionary whether
that word is present in the document considered or not. So the document iwould be represented
by a vector xi ∈ {0, 1}p, with xij = 1 i� word j of the dictionary is present in the ith document.

As we saw in the second lecture, it is possible to approach the problem using directly a conditional
model of p(y | x) or using a generative model of the joint distribution modeling separately p(y)
and p(x | y) and computing p(y | x) using Bayes rule. The naive Bayes model is an instance of
a generative model. By contrast the multi class logistic regression of the following section is an
example of a conditional model.

Y i is naturally modeled as a multinomial distribution with p(yi) = ∏K
k=1 π

yik
k . However p(xi | yi) =

p(xi1, . . . , xip | yi) has a priori 2p − 1 parameters. The key assumption made in the naive Bayes
model is thatX i

1, . . . , X
i
p are all independent conditionally on Y i. This assumption is not realistic

and simplistic, hence the term “naive". This assumption is clearly not satisfied in practice for doc-
uments where one would expect that there would be correlations between words that are not just
explained by a document category. The corresponding modeling strategy is nonetheless working
well in practice.

These conditional independence assumptions correspond to the following graphical model:

Y i

X i
1 X i

2

. . .

X i
p

The distribution of Y i is a multinomial distribution which we parameterize with (π1, ..., πK), and
we write µjk = P (X(i)

j = 1 | Y (i)
k = 1)We then have

p(X i = xi, Y i = yi) = p(xi, yi) = p(xi | yi)p(yi) =
p∏
j=1

p(xij | yi)p(yi)
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which leads to

p(xi, yi) =
[ p∏
j=1

K∏
k=1

µjk
xijy

i
k(1− µjk)(1−xij)y

i
k

] K∏
k=1

π
yik
k

and

log p(xi, yi) =
K∑
k=1

( p∑
j=1

(
xijy

i
k log µjk + (1− xij)yik log(1− µjk)

)
+ yik log(πk)

)
We can then use Bayes’ rule (hence the “Bayes” in “Naive Bayes”), which leads to

log p(yi | xi) = η(xi)>yi − A(η(xi))

with η(x) = (η1(x), . . . , ηK(x)) ∈ RK and

ηk(x) = w>k x+ bk, wk ∈ Rp, [wk]j = log µjk
1− µjk

, bk = log πk.

Note that, in spite of the name the naive Bayes classifier is not a Bayesian approach to classifica-
tion.

a. Multiclass logistic regression

In the light of the course on exponential families, the logistic regression model can be seen as
resulting from a linear parameterization as a function of x of the natural parameter η(x) of the
Bernoulli distribution corresponding to the conditional distribution of Y givenX = x. Indeed for
binary classification, we have that Y |X = x ∼ Ber(µ(x)) and in the logistic regression model we
set µ(x) = exp(η(x)− A(η(x))) = (1 + exp(−η(x))−1 and η(x) = w>x+ b.

It is then natural to consider the generalization to a multiclass classification setting. In that case,
Y |X = x ismultinomial distributionwith natural parameters (η1(x), . . . , ηK(x)). To again param-
eterize them linearly as a function of x, we need to introduce parameterswk ∈ Rp and bk ∈ R, for
all 1 ≤ k ≤ K and set ηk(x) = w>k x+ bk. We then have

p.p.(Yk = 1 |X = x) = exp(ηk(x)− A(η(x))) = eηk(x)∑K
k′=1 e

ηk′ (x) = ew
>
k x+bk∑K

k′=1 e
w>
k′x+bk′

,

and thus

log p.p.(Yk = y |X = x) =
K∑
k=1

yk(w>k x+ bk)− log
[ K∑
k′=1

ew
>
k′x+bk′

]
.

Like forbinary logistic regression, themaximumlikelihoodprinciple canused to learn (wk, bk)1≤k≤K
using numerical optimization methods such as the IRLS algorithm.

Note that the form of the parameterization obtained is the same as for the Naive Bayes model;
however, the Naive Bayes model is learnt as a generative model, while the logistic regression is
learnt as conditional model.

We have not talked about the multi class generalization of Fisher’s linear discriminant. It exists
as well as the multi class counterpart of the model seen for binary regression. It relies like in the
binary case on the assumption that p(x | y) is Gaussian. This is good exercise to derive it.
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III. Learning on graphical models

III. A. ML principle for general Graphical Models

Directed graphical model

Proposition : Let G be a directed graph with p nodes. Assume that (X1, ...Xn) are i.i.d., with p
features : i.e ∀i ∈ {1, .., n}, Xi ∈ Rp , and that are fully observed, i.e., there is no latent or hidden
variable among them. Then the ML principle decouples in p optimisation problems.

Proof : Let us assume we have a decoupled modelPΘ, i.e. :

PΘ :=
{
pθ(x) =

∏
j

p(xj | xπj , θj) | θ = (θ1, ..., θp) ∈ Θ = Θ1 × ...×Θp

}

L(θ) =
n∏
i=1

p(xi | θ) =
n∏
i=1

p∏
j=1

p(xij | xiπj , θj)

`(θ) =
p∑
j=1

n∑
i=1

log p(xij | xiπj, θj).

Then the ML principle reduces to solving p optimization problems of the form

max
θj

`j(θj) s.t θj ∈ Θj, with `j(θj) :=
n∑
i=1

log p(xij | xiπj , θj).

Undirected graphical model

� The ML problem is convex with respect to canonical parameters if: the data is fully observed
(no latent or hidden variable), and the parameters are decoupled.
� In general, if the data is not fully observed, the EM scheme or similar scheme is used.
If the parameters are coupled, the problem remains convex in some cases (e.g linear coupling), but
not in general.
� If themodel is a tree, one can reformulate themodel as a directed tree to get back to the directed
case.
� In general, to compute the gradient of the log partition function and thus to compute the gra-
dient of the log-likelihood, it is necessary to perform probabilistic inference on the model (i.e. to
compute∇A(θ) = µ(θ) = Eθ[φ(X)]). If themodel is a tree, this canbedonewith the sum-product
algorithmand if themodel is a close to a tree, the junction tree theory can be leveraged to perform
probabilistic inference; however in general probabilistic inference is NP-hard and so one needs to
use approximate probabilistic inference techniques.
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Approximate inference with MONTE-CARLOmethods

I. Samplingmethods

We o�en need to compute the expectation of a function f under a distribution p that cannot be
computed. This corresponds to compute µ = E[f(X)] where X is a random variable following
distribution p.

EXAMPLE I. .1. ForX = (X1, . . . , Xn) the vector of variables corresponding to a graphical model,
we can consider f : X 7−→ δXI=xI for a fixed subset I of J1, nK, then:

E[f(X)] = p(XI = xI)

If we know how to sample from p, we can use the following method:

Algorithm 6:MONTE-CARLO estimation
Input : p, n
Output: µ̂

1 DrawX1, . . . , Xn
i.i.d.∼ p

2 µ̂ = 1
n

∑n
i=1 f(Xi)

This method relies on the two following results:

PROPOSITION I. .1. [LAW OF LARGE NUMBERS (LLN)]
IfX is an integrable random variable (E[X] is defined and finite), and (Xi)i∈N∗ i.i.d.∼ X , then:

1
n

n∑
i=1

Xi −→
n→+∞

E[X] a.s.

THEOREM I. .2. [CENTRAL LIMIT THEOREM (CLT)]
IfX is a random variable such thatVar(X) = σ2 < +∞, and (Xi)i∈N∗ i.i.d.∼ X , then:

√
n
( 1
n

n∑
i=1

Xi − E[X]
) D−→

n→+∞
N (0, σ2)
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fromwhich we deduce that µ̂ −→
n→+∞

µ a.s. andE[|µ̂− µ|2] = σ2/n.

The hard question is: how to sample from a specific distribution?

I. A. Inverse transform sampling

Assume we can draw a uniform U ∼ U([0, 1]) distribution1.

We can easily draw a B(p) distribution by takingX = 1U≤p.

DEFINITION I. .1. [INVERSE TRANSFORM]
For a distribution pwith cumulative distribution function F , we define

F−1 : u 7−→ inf {x ∈ R | F (x) ≥ u}

PROPOSITION I. .3. IfU ∼ U([0, 1]) thenX = F−1(U) ∼ p.

PROOF If F is inversible we have:

p(X ≤ x) = p(F−1(U) ≤ x) = p(U ≤ F (y)) = F (y)

Otherwise we admit the result.

EXAMPLE I. .2. For an exponential distribution2 p : x 7−→ λ e−λx 1R+(x), we have

F−1 = − log
λ

and X = −1
λ

ln(U) ∼ p

I. B. Ancestral sampling

Consider the problem of sampling from a directed graphical model whose distribution takes the
form

p(x1, . . . , xn) =
n∏
i=1

p(xi | xπi)

We assume, without loss of generality, that the variables are indexed in a topological order.

Consider the following algorithm:

PROPOSITION I. .4. The random variable (x1, . . . , xn) returned by the ancestral sampling algo-
rithm follows exactly the joint distribution p.

PROOF We prove the result by induction. It is clearly obvious for a graph with a single node.

For two nodes corresponding the pair of variable (X1, X2), then eitherX1 andX2 are independent
and we are back to the single node case. Or π2 = {1} and then x1 is drawn from pX1 and, given

1use rand in Python
2one of the rare cases admitting an explicit inverse CDF
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Algorithm 7: Ancestral sampling
Input : n, p(Xi |Xπi) for all i ∈ J1, nK
Output: (x1, . . . , xn)

1 for i = 1 to n do
2 Draw xi from p(Xi |Xπi = xπi)
3 end

the value x1 obtained, x2 is drawn from the conditional distribution p(X2 |X1 = x1), then the pair
(x1, x2) follows the joint distribution pX1,X2 .

Now, assuming the result is true for n − 1 nodes we prove that it is also true for n nodes. First
note that a�er sampling x1, . . . , xn−1, we know that (x1, . . . , xn−1) follows the distribution given
by
∏n−1
i=1 p(xi | xπi) which is exactly the marginal distribution of (X1, . . . , Xn−1). But then xn is

drawn according to the distribution p(Xn | Xπn = zπn) which by the MARKOV property is equal
to p(Xn | (X1, . . . , Xn−1) = (z1, . . . , zn−1)). Applying the two nodes case to X̃2 = Xn and X̃1 =
(X1, . . . , Xn−1), weobtain that (x1, . . . , xn−1) is indeeddrawn fromthe jointdistribution (X1, . . . , Xn).
By induction the result is proven.

I. C. Rejection sampling

Assume that p(X) the distribution of X admits a density w.r.t. some measure µ3, known up to a
normalizing constant, i.e. we know p̃ such that p = p̃

Z
.

Assume that we can construct and compute a probability distribution q such that p̃ ≤ kq and as-
sume we can sample from q. We define the rejection sampling algorithm as :

Algorithm 8: Rejection Sampling
Input : n, p̃, q, k
Output: x

1 accept = 0
2 while accept = 0 do
3 Draw x from q

4 Draw accept from B( p̃(x)
kq(x))

5 end

PROPOSITION I. .5. The returned samplex returned by the rejection sampling follow distribution
p.

PROOF Wewrite the proof for the case of a discrete random variable. We have:

p(X = x,X is accepted) = p(X is accepted |X = x)p(X = x) = p̃(x)
kq(x)q(x) = p̃(x)

k

3typically the LEBESGUEmeasure for a continuous randomvariable and the countingmeasure for adiscrete variable
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and so

p(X is accepted) =
∑
x

p̃(x)
k

= Zp
k

which gives:

p(X = x |X is accepted) = p̃(x)
k

k

Zp
= p(x)

To write the general version of this proof formally for any random variable admiting a density
w.r.t.µ, wewould need to defineA to be the BERNOULLI randomvariable such thatA = 1X is accepted

and to consider pX,A the joint density of (X,A) w.r.t. the product measure µ × ν, where ν is the
counting measure on {0, 1}. The proof is then the same as above.

REMARK I. .1. In practice, finding q and k such that acceptance has a reasonably large probability
is hard, because it requires to find a fairly tight bound on p(x) over the entire space.

I. D. Importance sampling

AssumeX ∼ p and Y ∼ q. We aim at computing the expectation of a function f(X). One has:

E[f(X)] =
∫
f(x)p(x)dx =

∫ f(x)p(x)
q(x) q(x)dx = E

[
f(Y )p(Y )

q(Y )
]

= E[g(Y )]

where g = fp/q. Thus is we can sample from q, we can approximate E[f(X)] by a MONTE-CARLO
estimation:

E[f(X)] ' µ̂ = 1
n

n∑
i=1

g(Yi) = 1
n

n∑
i=1

f(Yi)
p(Yi)
q(Yi)

where (Yi)1≤i‖eqn
i.i.d.∼ q. Theweights (w(Yi) = p(Yj)

q(Yj))1≤i≤n are called importanceweights. We have:

E[µ̂] = 1
n

n∑
i=1

∫
f(x)p(x)

q(x)q(x)dx =
∫
f(x)p(x)dx = µ

Var(µ̂) = 1
n

Var
(f(Y )p(Y )

q(Y )
)

LEMMA I. .6. Assume |f | ≤M a.s., then:

Var(µ̂) ≤ M2

n
E
[
p(X)
q(X)

]

PROOF It simply comes fromVar(Z) ≤ E[Z2].
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REMARK I. .2. We have:

E
[
p(X)
q(X)

]
=
∫ p(x)2

q(x) dx =
∫ (p(x)− q(x))2

q(x) dx+
∫

2p(x)− q(x)dx =
∫ (p(x)− q(x))2

q(x) dx︸ ︷︷ ︸
χ2 divergence between p and q

+1

Hence, importance samplingwill give good results if q hasmasswhere p has. Indeed, if for some
y, q(y)� p(y), our estimator may have a very large variance.

Extension of importance sampling Assume we only know p and q up to a constant : p = p̃
Zp
and

q = q̃
Zq
, with p̃ and q̃ known. Then:

E
[
f(Y ) p̃(Y )

q̃(Y )

]
= Zp
Zq

E
[
f(Y )p(Y )

q(Y )

]
= Zp
Zq
µ

and the LLN gives
ˆ̃µ = 1

n

n∑
i=1

f(Yi)
p̃(Yi)
q̃(Yi)

−→
n→+∞

Zp
Zq
µ a.s.

Taking f = 1, we get

Ẑp/q = 1
n

n∑
i=1

p(Yi)
q(Yi)

−→
n→+∞

Zp
Zq

a.s.

Thus we obtain:
µ̂ = 1

Ẑp/q
ˆ̃µ −→

n→+∞
µ a.s.

REMARK I. .3. Even ifZp = Zq = 1, in practice renormalizing by Ẑp/q o�en improves the estima-
tion.

II. MARKOV chain MONTE-CARLO

Unfortunately, the previous techniques are o�en insu�icient, especially for complex multivariate
distributions, so that it is not possible to drawexactly from thedistributionof interest or to obtain a
reasonablygoodestimatesbasedon importance sampling. The ideaofMCMC is that inmanycases,
even though it is not possible to sample directly from a distribution of interest, it is possible to
construct a MARKOV chain (Xt)t≥0 whose distribution qt = p(Xt) converges to a target distribution
p(Y ).

The idea is then that if T0 is su�iciently large, we can consider that for all t > T0, Xt follows ap-
proximately the distribution p and so:

1
T − T0

T∑
t=T0+1

f(Xt) '
1

T − T0

T∑
t=T0+1

f(Yt) −→
T→+∞

E[f(Y )]

where (Yt)t≥0
i.i.d.∼ Y .
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Note that there is adoubleapproximation: onedue to the theapproximation qt ≈ p for t su�iciently
large and the seconddue to theuseof the lawof large numbers. Note also that thedrawsof (Xt)t≥0
are not independent (but this is not necessary here to have a law of large numbers).

The period beforeT0 is o�en called the burn in period. Themost classical procedure to obtain such
a MARKOV chain in the context of graphical models is called GIBBS sampling. We will see it in more
details later.

NOTATION II. .1. In this whole sectionwewriteXt instead ofX(t) whichwouldmatch better with
other sections. Indeed, here Xt should be thought typically as the whole vector of variables
corresponding to a graphical model Xt = (Xt,j)1≤j≤n. We write t as an index just to simplify
notations.

In the followingwe assume thatweworkwith randomvariables taking values in a setX with |X | =
K < +∞. HoweverK is typically very large since it corresponds to all the configurations that the
set of variables of a graphical model can take.

One can find a review on MARKOV chains in Annex VI. .

METROPOLIS-HASTINGSalgorithm Weconsider aproposal distributionZ |X thatwecansample,
denoted byR, and we define an acceptance probability α(x, z) of acceptingZ = z whenX = x.

Algorithm 9:METROPOLIS-HASTINGS
Input : q, R, T, α
Output: (xt)t∈J0,T K

1 Draw x0 from q
2 for t ∈ J1, T K do
3 Draw zt from p(Z |Xt−1 = xt−1) = R(xt−1, .)
4 Set xt = zt with probability α(xt−1, zt), otherwise set xt = xt−1
5 end

PROPOSITION II. .1. Assume X is finite and R is the transition matrix of an irreducible [aperi-
odic?] MARKOV chain such thatR(x, z) > 0 =⇒ R(z, x) > 0 for any x, z ∈ X and p(x) > 0 for
any x ∈ X .

Then it exists a choice ofα such that theMETROPOLIS-HASTINGS algorithmdefines aMARKOV chain
that converges to p.

PROOF We define S the transition matrix of (Xt)t≥0. We have:

∀z 6= x, S(x, z) =
{

R(x, z)α(x, z) if x 6= z
R(x, x) +∑

z′ 6=xR(x, z′)(1− α(x, z′)) otherwise

We want to choose S such that we have detailed balance4: we just need to have it for every x 6= z

4i.e. S is reversible
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as it is automatic for (x, x). Then

p(x)S(x, z) = p(z)S(z, x) ⇐⇒ p(x)R(x, z)α(x, z) = p(z)R(z, x)α(z, x) ⇐⇒ α(x, z)
α(z, x) = p(z)R(z, x)

p(x)R(x, z)

Defining α as :

∀x, z, α(x, z) = min
(
1, p(z)R(z, x)
p(x)R(x, z)

)
then α takes values in [0, 1] and the last equation of the above equation is satisfied for all x 6= z.
Thus p is a reversible distribution of the chain, so the chain converges to p as we can show

III. Approximate inference with MCMC

III. A. GIBBS sampling

Letus consider anundirectedgraphand its associateddistributionp fromwhichwewant to sample
(in order to do inference for example). We assume that:

• It is di�icult to sample directly from p.
• It is easy to sample from5 Pp(Xi |X−i).

The idea consists in using the MARKOV property so that:

Pp(Xi |X−i) = Pp(Xi |XNi)

whereNi is theMARKOVblanketof node i. Basedon this, GIBBS sampling is aprocess that converges
in distribution to p.

The most classical version of the GIBBS sampling algorithm is the cyclic scan GIBBS sampling:

Algorithm 10: cyclic scan GIBBS sampling
Input : T, (Pp(Xi |X−i))1≤i≤n
Output: x(T )

1 Initialize x(0) and t = 0
2 while t < T do
3 for i ∈ J1, nK do
4 t = t+ 1
5 Draw x(t)

i from Pp(Xi |X−i = x
(t−1)
−i )

6 Set x(t)
j = x

(t−1)
j for j 6= i

7 end
8 end

Another version of the algorithm called random scan GIBBS sampling consists in picking the index
i at random at each step t:

5recall thatX−i = X[n]\{i}
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Algorithm 11: Random scan GIBBS sampling
Input : T, (Pp(Xi |X−i))1≤i≤n
Output: x(T )

1 Initialize x(0)

2 for t ∈ J1, T K do
3 Draw i from U(J1, nK)
4 Draw x(t)

i from Pp(Xi |X−i = xt−1
−i )

5 Set x(t)
j = x

(t−1)
j for j 6= i

6 end

III. B. Application to the ISINGmodel

Let us now consider the ISING model on a graphG = (V,E)with V = [n]. X is a random variable
which takes values in {0, 1}n with a probability distribution that depends on some parameter η:

∀x ∈ {0, 1}n , pη(x) = exp
(∑
i∈V

ηixi +
∑

(i,j)∈E
ηijxixj − A(η)

)
To apply the Gibbs sampling algorithm, we need to compute P(Xi |X−i).

We have

p(x) = p(xi, x−i) = 1
Z(η) exp

(
ηixi +

∑
j∈Ni

ηijxixj +
∑
j 6=i

ηjxj +
∑

(j,j′)∈E | j,j′ 6=i
ηjj′xjxj′

)

and thus

p(x−i) = 1
Z(η)

∑
z∈{0,1}

exp
(
ηiz +

∑
j∈Ni

ηijzxj +
∑
j 6=i

ηjxj +
∑

(j,j′)∈E | j,j′ 6=i
ηjj′xjxj′

)

Taking the ratio of the two previous quantities, the two last terms of the exponentials cancel out
and we get

P(xi | x−i) =
exp

(
ηixi +∑

j∈Ni ηijxixj
)

1 + exp
(
ηi +∑

j∈Ni ηijxj
)

In particular:

P(Xi = 1 | x−i) = 1
1 + exp

(
− (ηi +∑

j∈Ni ηijxj)
) = σ

(
ηi +

∑
j∈Ni

ηijxj

)

where σ is the logistic function σ : z 7−→ (1 + e−z)−1.

Without surprise, the conditional distribution P(Xi = xi |X−i = x−i) only depends on the vari-
ables that are neighbors of i in the graph and that form its MARKOV blanket, since wemust have

P(Xi = xi |X−i = x−i) = P(Xi = xi |XNi = xNi)

Since the conditional distribution of Xi given all other variables is a BERNOULLI distribution, it is
easy to sample it using a uniform random variable.
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PROPOSITION III. .1. Random scan GIBBS sampling satisfies detailed balance for π the GIBBS
distribution of interest (i.e. the distribution of the graphical model).

PROOF Let us consider one step of the random scan GIBBS sampling algorithm starting from π the
distribution of the graphical model. The idea is to prove the reversibility.

We first prove the result for an index i fixed, that is we prove that the transition qi,GIBBS(x(t+1) | x(t))
that only resamples the ith coordinate of x(t) is reversible for π.

We write pπ(xi | x−i) the conditional distribution pπ(xi | x−i) = π(xi,x−i)
π(xi) of the GIBBS distribution

π. We have:

π(x(t))qi,GIBBS(x(t+1) | x(t)) = π(x(t))δ
x

(t+1)
−i ,x

(t)
−i
pπ(x(t+1)

i | x(t)
−i)

= π(x(t)
−i)pπ(x(t)

i | x(t)
−i)δx(t+1)

−i ,x
(t)
−i
pπ(x(t+1)

i | x(t)
−i)

= π(x(t+1)
−i )pπ(x(t)

i | x(t+1)
−i )δ

x
(t)
−i,x

(t+1)
−i

pπ(x(t+1)
i | x(t+1)

−i )

= π(x(t+1))qi,GIBBS(x(t) | x(t+1))

and detailed balance for qi,GIBBS is valid for any i. In the random scan case, the index i being chosen
at random uniformly with probability 1

n
, the GIBBS transition is in fact:

1
d

d∑
i=1

qi,GIBBS

The result is then obtained by taking the average over i in the previous derivation. Thus π is a
stationary distribution of the random scan GIBBS transition.

PROPOSITION III. .2. If theGIBBSdistribution p satisfies p(x) > 0 for allx ∈ X , theMARKOV chain
defined by the GIBBS sampling algorithm (cyclic or random) converges in distribution to π.

EXERCICE III. .1. Extend GIBBS method to POTTS model.

EXERCICE III. .2. Prove that the GIBBS transition is a special case of METROPOLIS-HASTINGS pro-
posal that is always accepted.
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Variational inference

I. Overview

Thegoal is todoapproximate inferencewithoutusingsampling. Indeed, algorithmssuchasMETROPOLIS-
HASTINGS or GIBBS sampling can be very slow to converge, besides in practice it is very di�icult to
find a good stopping criterion. People working onMCMCmethods try to find clever tricks to speed
up the process, hence the motivation for variational methods.

Let us consider a distribution onX finite (but usually very large) andQ an exponential family with
qη(x) = exp(η>φ(x)− A(η)). Let us assume that the distribution of interest p, that is for example
the distribution of our graphical model that we are working with, is in Q. The goal is to compute
Ep[φ(x)].

Computing this expectation corresponds to probabilistic inference in general. For example, for the
POTTS model, we have

φ(x) = ((xik)i∈V,1≤k≤K , (xikxjk′)(i,j)∈E,1≤k,k′≤K)>

We recall that p = argminqD(q || p)where:

D(q || p) =
∑
x∈X

q(x) log q(x)
p(x) = Eq[− log p(X)]−H(q)

Since p ∈ Q, it is associated with a parameter η thus:

Eq[− log p(X)] = Eq[−η>φ(X) + A(η)] = −η>Eq[φ(X)] + A(η) = −η>µ(q) + A(η)

where µ(q) is the moment parameter. Thus we have:

−D(p || q) = η>µ(q) +H(q)− A(η)

which is a nonpositive guantity thus,A(η) ≥ η>µ(q) +H(q) for all q. Maximizing with respect to q
in the exponential family leads to:

A(η) = max
q∈Q

η>µ(q) +H(q)

and the unique value of q that attains the maximum is p.
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REMARK I. .1. It is possible here to get rid of q and express things only in terms of the moment.
It is indeed a way to parameterize the distribution q : for a realizable µ in the exponential family
there is a single associated distribution qµ. The maximization problem becomes:

max
µ∈M

η>µ+ H̃(µ)

where H̃(µ) = H(qµ) andwhereM is called themarginal polytope and is the set of all possible
momentsa. The maximum is only attained for µ∗ = µ(p) = Ep[φ(X)], which is exactly the
expectation that needs to be computed.

It turns out that it is possible to show that H̃ is always a concave function, so that the optimiza-
tion problem above is a convex optimization problem.

It is interesting to note that we have thus turned the probabilistic inference problem, which, a
priori, required to compute expectations, that is integrals, into an optimization problem, which
is furthermore convex. Unfortunately this convex optimization problem is NP-hard to solve in
general because it solves the NP-hard probabilistic inference problem, and it is not possible to
escape the fact that the latter isNP-hard. Thisoptimizationproblem is thus ingeneral intractable
and this is because of two reasons:

• for a general graph themarginal polytopeM has number of faces which is exponential in
the tree width of the graph.

• H̃ can be extremely complicated to write explicitly.
aWe have seen in the course on exponential families that the distribution of maximum entropy q under the

moment constraintEq[φ(X)] = µ is also, when it exists, the distribution ofmaximum likelihood in the exponential
family associated with the su�icient statistic φ. This essentially – but not exactly – shows that for any moment µ
there exists a member q of the exponential family such that µ = µ(q). In fact, to be rigorous one has to be careful
about what happens at points of the boundary of the setM: the above statement is correct for µ in the interior of
M. The points on the boundary ofM are only corresponding to limits of distributions of the exponential family
that can be degenerate, like the BERNOULLIdistributionwith probability 1 (or 0) for example in the BERNOULLIfamily
case, which are themselves not in the family

II. Mean field

In order to approximate the optimization problem it is possible either to change the set of distri-
butionQ, themomentsM or to change the definition of the entropy H̃ . Themean field technique
consists in choosing q in a set that makes all variables independent.

For a graphical model on variables x1, . . . xn, let us consider:

Qindep =
{
q | ∀x, q(x) =

n∏
i=1

qi(xi)
}

the collection of distributions that make the variablesX1, . . . , Xn independent.

We consider the optimization problem:

max
q∈Qindep

η>µ(q) +H(q)
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Note that in general p /∈ Qindep so that the solution cannot be exactly µ(p).

In order to write this optimization problem for the POTTSmodel, we need towrite explicitly η>µ(q)
andH(q).

Moments in themean field formulation Let q ∈ Qindep. We have:

η>µ(q) = η>Eq[φ(X)] =
∑

i∈V,1≤k≤K
ηikEq[Xik] +

∑
(i,j)∈E,1≤k,k′≤K

ηijkk′Eq[XikXjk′ ]

By independance of the variables

Eq[Xik] = Eqi [Xik] = µik(q) and Eq[XikXjk′ ] = Eqi [Xik]Eqj [Xj`] = µikµjk′

Note that if we had not constrained q to make these variables independent, we would in general
have a moment here of the form Eq[XikXjk′ ] = µijkk′(q). This is the main place where the mean
field approximation departs from the exact variational formulation.

EntropyH(q) in themean field formulation By independence of the variables one hasH(q) =∑n
i=1H(qi). Recall that qi is the distribution on a single node, and thatXi is amultinomial random

variable, one has:

H(qi) = −
K∑
k=1

qi(Xik = 1) log qi(Xik = 1) = −
K∑
k=1

µik log µik

Mean field formulation for the POTTS model In the end, putting everything together the opti-
mization problem can be written as

maxµ
∑
i∈V,1≤k≤K ηikµik +∑

(i,j)∈E,1≤k,k′≤K ηijkk′µikµjk′ −
∑
i∈V,1≤k≤K µik log µik

subject to µ ≥ 0, ∀i ∈ V,∑K
k=1 µik = 1

The problem is simple to express, however we cannot longer expect that it will solve our original
problem, because by restricting to the set Qindep, we have restrained the forms that the moment
parameters µijkk′ = E[XikXjk′ ] can take. In particular since p /∈ Qindep in general, the optimal
solution of the mean field formulation does not retrieve the correct moment parameter µ(p). The
approximationwill be reasonable ifµ(p) is not too far from the sets ofmoments that are achievable
by moments of distributions inQindep, since the moments of p are approximated by the moments
of the closest independent distribution. Note however that the mean field approximation is much
more subtle than ignoring the binary potentials in the model, which would be a too naive way of
finding an "approximation" with an independent distribution.

One di�iculty though is that the objective function is no longer concave, because of the products
µikµjk′ which arise because of the independence assumption from themean field approximation.
Coordinate descent on each of the µi (not the µik) is an algorithm of choice to solve this kind of
problem. To present the algorithmwe consider the case of the ISINGmodel, which is a special case
of the POTTS model with 2 states for each variable.
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Mean field formulation for the ISING model When working with the ISING model is simple to
reduce the number of variables by using the fact that µi2 = 1 − µi1, we therefore write µi for µi1
and the mean field optimization problem becomes:

[???] maxµ
∑
i ηiµi +∑

i,j ηijµiµj −
∑
i

(
µi log µi + (1− µi) log(1− µi)

)
subject to µ ∈ [0, 1]n

The stationary points for each coordinate correspond to the zeros of the partial derivatives. As

∂f

∂µi
= ηi +

∑
j∈Ni

ηijµj − log µi
1− µi

we obtain

∂f

∂µi
= 0 ⇐⇒ log µi/(1− µi) = ηi +

∑
j∈Ni

ηijµj ⇐⇒ µ∗i = σ
(
ηi +

∑
j∈Ni

ηijµj
)

where σ is the logistic function.

Note that inGIBBS samplingx(t+1)
i = 1withprobabilityσ(ηi+

∑
j∈Ni ηijxj). This is calledmean field

because the sampling is replacedby anapproximationwhere it is assumed that the sample value is
equal to its expectation, which for the physicists correspond to themean field in the ferromagnetic
ISING model.

Finally, let us insist that the mean field formulation is only one of the formulations for variational
inference, there are several other ones, amongwhich structuredmean field, expectation propaga-
tion, loopy belief propagation (which can be reinterpreted as a solving variational formulation as
well), tree-reweighted variational inference, . . .
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[todo]

I. Model Selection

I. A. Introduction

Let’s consider twomodelsM1,M2 such thatM1 ⊂M2 andΘ1 ⊂ Θ2. We define for i ∈ J1, 2K:

θ̂Mi
= argmaxθ∈Θi log pθ(x1:n)

x1

x2 x3

x1

x2 x3

Figure 13.1: Example of Model Section for n = 2 (M1 on the l.h.s andM2 on the r.h.s)

We want to select the best model. For this, we need to define some kind of model score. We can’t
use the maximum likelihood as a score since we have by definition:

log pθ̂M2
≥ log pθ̂M1

We are interested in the capacity of the generalisation of themodel: we’d like to avoid over-fitting.
Commonly, one way of dealing with that task is to select the size of themodel by cross-validation.
Here, we’ll not develop it furthermore.

In this part we present the BAYES factors, which give us themain BAYES principal for selectingmod-
els. Also we will show the link with the penalised version BIC (Bayesian Information Criterion)
which is used by the frequentists so as to "correct" the maximum likelihood and which has good
proprieties. The issue with the selection model task is the issue with the selection of the variables
which are an active topic of research. Note that there are others ways of penalising the maximum
likelihood and of selecting models.
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If p0 is the distribution of the real data, we wish to choose between di�erent models (Mi)i∈I by
maximising Ep0 [log pMi

(X∗ |D)] whereX∗ is a new test sample distributed as p0 (in fact, it is still
the maximum likelihood principle but we take the expectation on new data).

In the Bayesian framework, we can compute the marginal probability of data for a given model∫
p(x1:n | θ)p(θ |Mi)dθ = p(D |Mi)

and, by applying the BAYES rule, compute the a posteriori probability of the model:

p(Mi |D) = p(D |Mi)p(Mi)
p(D)

I. B. BAYES factor

Let’s introduce the BAYES factors, which enable us to compare twomodels:

p(Mi |D)
p(Mj |D) = p(D |Mi)p(Mj)

p(D |Mj)p(Mj)

Themarginal probability of data p(D |M) = p(x1:n |M) can decompose itself in a sequential way
by using:

p(xn | x1:n−1,M) =
∫
p(xn | θ)p(θ | x1:n−1,M)dθ

Indeed, we get:

p(D |M) = p(xn | x1:n−1,M)p(xn−1 | x1:n−2,M) . . . p(x1 |M)

such as
1
n

log p(D |M) = 1
n

n∑
i=1

log p(xi | x1:i−1,M) ' Ep0 [log pM(X |D)]

I. C. Bayesian Information Criterion

The Bayesian score is approximated by the BIC:

log p(D |M) = log pθ̂MV(D)− K

2 log(n) +O(1)

where pθ̂MV(D) is the data’s distribution when the parameter is the maximum likelihood estimator
θ̂MV,K is the number of parameters of the model and n the number of observations.

In the following section,weoutline theproof of this result in the caseof anexponential family given
by p (x | θ) = exp (〈θ, φ (X)〉 − A (θ)).
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I. D. LAPLACE’s method

p (D |M) =
∫ n∏

i=1
p (xi | θ) p (θ) dθ

=
∫

exp
(〈
θ, nφ

〉
− nA (θ)

)
p (θ) dθ

〈θ, nφ〉 − nA(θ) = 〈θ̂, nφ〉 − nA(θ̂) + 〈θ − θ̂, nφ〉

− n(θ − θ̂)T∇θA(θ̂)− 1
2(θ − θ̂)Tn∇2

θA(θ̂)(θ − θ̂)

+ Rn

whereRn is a negligible rest.

But the maximum likelihood is the dual of the maximum entropy: maxH(pθ) such that µ(θ) = φ.

µ(θ̂) = φ

p(D |M) ' exp(〈θ̂, nφ〉 − nA(θ̂))×
∫

exp
(
−1

2(θ − θ̂)TnΣ̂(θ − θ̂)
)
p(θ)dθ

However:

1. the information of fisher is equal to Σ̂−1

2.
∫

exp
(
−1

2

(
θ − θ̂

)T
nΣ̂

(
θ − θ̂

))
p (θ) dθ ' c

√
(2π)k

∣∣∣∣ Σ̂−1

n

∣∣∣∣
Thus:

log p (D |M) = log p
θ̂

(X) + 1
2 log

(
(2π)k

∣∣∣∣∣Σ̂−1

n

∣∣∣∣∣
)

= log p
θ̂

(X) + k

2 log (2π) + 1
2 log

(( 1
n

)k ∣∣∣Σ̂−1
∣∣∣)

= log p
θ̂

(X) + k

2 log (2π)− k

2 log (n) + 1
2 log

(∣∣∣Σ̂−1
∣∣∣)

Themain reasonwhypresenting theBIC is that a theoremprove the consistencyof theBIC. In other
words, when the number of observations is su�icient, thanks to this criterion we choose with a
probability that converges to 0, a model that satisfies:

Mk ∈ ArgmaxMEp0

[
log

(
p
θ̂MV

(X;M)
)]

To bring a quick clarification about the notations used in this part (model selection), please read
below. Thenotation is a bit confusing (itwas used for example inBishop’s book, but is a bit sloppy).
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From theBayesianperspective, we could treat themodel choice as a randomvariableM . In theM1
vs.M2 vs.M3 example, there are only 3models, and thusM is a discrete variable with 3 possible
values (M = M1,M = M2 orM = M3).

Therefore, when we were writing quantities like the Bayes factor p(M1 | D)/p(M2 | D), It really
meant p(M =M1 |D)/p(M =M2 |D). It did notmean thatM1 andM2 were two di�erent random
variableswhich can take complicated values (someone askedwhat spaceM1was in and it seemed
very complicated – what is meant is just thatM is an index in possible (few) models).

D was the data random variable as usual. The mixing of random variables (hereM ) vs. their pos-
sible values (M = 1, 2 etc) in the same notation (like p(M1 |D)) is usual but confusing; better to
use the explicit p(M = M1 |D) notation to distinguish a value vs. a generic random variable. . . .

However, in general,M could be as complicated as we want. For example, it could be a vector of
hyper-parameters for the prior distributions. Or it could also have binary component indicating
the absence or presence of an edge in graphical model, etc. It does not have to just be an index. It
could even be a continuous objects !

It is also fine tohave infinite dimensional objects1. For example, consider the latent variablemodel:
x is observed, θ andαare latent variables; andM decides theprioroverα. I.e. supposep(x |θ, α,M) =
Multi(θ, 1), p(θ | α,M) = Dir(θ | α), and p(α |M) = M(α) i.e.M ranges over possible distribu-
tions over the positive vector α.M here is quite a complicated object, but this is fine. . .

II. Example of model

II. A. Bernoulli variable

Let’s consider random variablesXi ∈ {0, 1}. We’ll assume that theXi are i.i.d. conditionally to θ.
Then they follow a Bernoulli law:

p (x | θ) = θx (1− θ)1−x

II. B. Priors

Let’s introduce the distribution Beta whose density on [0, 1] is

p(θ;α, β) = 1
B(α, β)θ

α−1(1− θ)β−1

WhereB(α, β) is a short-name of the Beta function:

∀α > 0,∀β > 0, B (α, β) =
∫ 1

0
θα−1 (1− θ)β−1 dθ

And the Gamma function:
Γ (x) =

∫ +∞

0
tx−1 exp (−t) dt

1 This would be in the “non-parametric setting” – non-parametric = infinite dimensional.
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We can show thatB (α, β) is symmetric and satisfies:

B (α, β) = Γ (α) Γ (β)
Γ (α + β)

We choose as the prior distribution on θ the Beta distribution:

p (θ) ∝ θα−1 (1− θ)β−1

p (θ) = θα−1 (1− θ)β−1

B (α, β)

II. C. A posteriori

p (θ | x) = p (x, θ)
p (x) ∝ p (x, θ)

But:

p (x, θ) = θx (1− θ)1−x θ
α−1 (1− θ)β−1

B (α, β)

Hence:

p (θ | x) ∝ θx+α−1 (1− θ)1−x+β−1

B (α, β)

p (θ | x) = θx+α−1 (1− θ)1−x+β−1

B (x+ α, 1− x+ β)

Thus, if instead of considering a unique variable , we observe an i.i.d. sample of data, the joint
distribution can be written as:

θα−1 (1− θ)β−1
n∏
i=1

θxi (1− θ)1−xi .

Let’s introduce:

k =
n∑
i=1

xi

Then we get:

p (θ | x1, x2, . . . , xn) = θk+α−1 (1− θ)n−k+β−1

B (k + α, n− k + β)
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III. Special case of the Beta distribution

We remind that:
θ ∼ Beta (α, β)

For α = β = 1, we get a uniform prior.

For α = β > 1, we get a bell curve.

For α = β < 1, we get a U curve.

E [θ] = α
α+β

V [θ] = αβ

(α+β)2(α+β+1) = α
(α+β) ×

β
(α+β) ×

1
(α+β+1)

For α > 1 and β > 1, we get the mode: α−1
α+β−2 .

In the case, let’s writeD for the data:

θpost = E [θ |D] = α + k

α + β + n
= α

(α + β) ×
(α + β)

(α + β + n) + n

(α + β + n) ×
k

n

We can see that the a posteriori expectation of the parameter is a convex combination of themaxi-
mum likelihood estimator and the prior expectation. It converges asymptotically to themaximum
likelihood estimator .

If we use a uniform prior distribution,E [θ |D] = k+1
n+2 . Laplace proposed to correct the frequentist

estimator, it seemed odd to him that he was not defined in the absence of data. He proposed to
add two virtual observation (0 and 1) such that in the absence of data the estimator equals 1

2 . This
correction is known as Laplace’s correction.

The variance of the a posteriori distribution decrease in 1
n
.

V [θ |D] = θM (1− θM) 1
(α + β + n)

Wehave chosen a sharper distribution around θM , in the sameway than in a frequentist approach,
the confidence intervals narrow around the estimator when the number of observations increase.

III. A. Playful propriety

p (x1, x2, . . . , xn) = B (k + α, n− k + β)
B (α, β) = Γ (α + k) Γ (β + n− k) Γ (α + β)

Γ (α + β + n) Γ (α) Γ (β) (13.1)

Let’s use this well-known property of the Gamma function:

Γ (n+ 1) = n!
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and ∀x > −1,Γ (x+ 1) = xΓ (x)

such that
Γ (α + k) = (α + k − 1) (α + k − 2) . . . αΓ (α)

let’s write α[k] = α (α + 1) . . . (α + k − 1) and simplify the expression 13.1:

p (x1, x2, . . . , xn) = α[k]β[n−k]

(α + β)[n]

We shall note the analogy with the Polya urn model: let us consider (α + β) balls of colour: α are
black, β are white. When drawing a first black ball, the probability of the event is:

P (X1 = 1) = α

α + β

A�er thedrawing,weputback theball in theurnandweaddaball of the samecolour. Let’s imagine
that we draw again a black ball then the probability of this event is:

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1 |X1 = 1) = α

α + β
× α + 1
α + β + 1

However:
P (X1 = 1, X2 = 0) = α

α + β
× β

α + β + 1

In more general case , we show by recurrence that the marginal probability of obtaining some se-
quence of colours by drawing from a Polya urn is exactly the marginal probability of obtaining the
same result from the marginal model, obtained by integrating on a priori theta. First, this show
that drawings from a Polya urn are exchangeable; Secondly, the mechanism of this type of urn,
and its exchangeability, we’ll be useful for the Gibbs sampling and for the same type of Bayesian
models.

III. B. Conjugate priors

Let F be a set. We assume that p (x | θ) known, we deduce from that: p (θ) ∈ F such that p (θ | x) ∈
F. We say that p (θ) is conjugated to the model p (x | θ).

a. Exponential model

Let’s consider:

p (x | θ) = exp (〈θ, φ (x)〉 − A (θ))
p (θ) = exp (〈α, θ〉 − τA (θ)−B (α, τ))
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For p (x | θ), θ is the canonical parameter. For p (θ), α is the canonical parameter and θ is the su�i-
cient statistic. Let us note thatB do not stand for the Beta distribution.

p (θ | x) ∝ p (x | θ) p (θ) ∝ exp (〈θ, φ (x)〉 − A (θ) + 〈α, θ〉 − τA (θ)−B (α, τ))

Let us define:

φ = 1
n

n∑
i=1

φ (xi)

Then:
p (θ | xi) ∝ exp (〈θ, α + φ (xi)〉 − (τ + 1)A (θ)−B (α + φ (xi) , τ + 1))

p (θ | x1, x2, . . . , xn) ∝ exp
(〈
θ, α + nφ

〉
− (τ + n)A (θ)−B

(
α + nφ, τ + n

))

p (x1, x2, . . . , xn) ∝ exp
(
B (α, τ)−B

(
α + nφ, τ + n

))
Since the family is an exponential one,

νpost = E [θ |D] = ∇αB
(
α + nφ, τ + n

)
θMAP results from:

∇θp (θ | x1, x2, . . . , xn) = 0

α + nφ = (τ + n)∇θA (θ) = (τ + n)µ (θ)

Thus we get µMAP = µ (θ) in the previous equation. Consequently:

µMAP = α + nφ

τ + n
= α

τ
× τ

τ + n
+ n

τ + n
φ

b. Univariate Gaussian

i. With and a priori on µ but not on σ2

p
(
x | µ, σ2

)
= 1√

2πσ2
exp

(
−1

2
(x− µ)2

σ2

)

p
(
µ | µ0, τ

2
)

= 1√
2πτ 2

exp
(
−1

2
(µ− µ0)2

τ 2

)

Thus:
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p
(
D | µ, σ2

)
= p

(
x1, x2, . . . , xn | µ, σ2

)
=
(

1√
2πσ2

)n
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2

)

p (µ |D) = p (µ | x1, x2, . . . , xn)

= exp
(
−1

2

(
(µ− µ0)2

τ 2 +
n∑
i=1

(xi − µ)2

σ2

))

= exp
(
−1

2

(
µ2 − 2µµ0 + µ2

0
τ 2 +

n∑
i=1

µ2 − 2µxi + x2
i

σ2

))

= exp
(
−1

2

(
µ2Λ− 2µη +

(
µ2

0
τ 2 +

n∑
i=1

x2
i

σ2

)))

Where:
Λ = 1

τ 2 + n

σ2

η = µ0

τ 2 + nx

σ2

x = 1
n

n∑
i=1

xi

Thus:

µpost = E [µ |D]

= η

Λ

=
µ0
τ2 + nx

σ2
1
τ2 + n

σ2

= σ2µ0 + nτ 2x

σ2 + nτ 2

= σ2

σ2 + nτ 2µ0 + nτ 2

σ2 + nτ 2x

And:

Σ̂2
post = V [µ |D]

= 1
Λ

= σ2τ 2

σ2 + nτ 2

Indeed, the variance decreases in 1
n
.
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ii. With an a priori on σ2 but not onµ We get p (σ2) as an Inverse Gamma form.

iii. With an a priori on µ and σ2 Gaussian a priori on x and µ, Inverse Gamma a priori on σ2.
Please refer to the chapter 9 of the course handout (Jordan’s polycopié).

IV. A posteriori Maximum (MAP)

θMAP = arg max
θ
p (θ | x1, x2, . . . , xn)

= arg max
θ
p (x1, x2, . . . , xn | θ) p (θ)

Because, with the Bayes rule:

p (θ | x1, x2, . . . , xn) = p (x1, x2, . . . , xn | θ) p (θ)
p (x)

The a posteriori maximum is not really Bayesian, it’s rather a slight modification brought to the
frequentist estimator.

IV. A. Predictive probability

In the Bayesian paradigm, the probability of a future observation x∗ will be estimated by the Pre-
dictive probability:

p (x∗ |D) = p (x∗ | x1, x2, . . . , xn)

=
∫
p (x∗ | θ) p (θ | x1, x2, . . . , xn) dθ

p (θ | x1, x2, . . . , xn) ∝ p (xn | θ) p (x1 | θ) p (x2 | θ) . . . p (xn−1 | θ) p (θ)
∝ p (xn | θ) p (θ | x1, x2, . . . , xn−1) p (x1, x2, . . . , xn−1)

∝ p (xn | θ) p (θ | x1, x2, . . . , xn−1) p (x1, x2, . . . , xn−1)
p (x1, x2, . . . , xn)

A sequential calculus is possible since:

p (θ | x1, x2, . . . , xn) = p (xn | θ) p (θ | x1, x2, . . . , xn−1)
p (xn | x1, x2, . . . , xn−1)

Vocabulary:
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• a priori information: p (θ | x1, x2, . . . , xn−1)
• likelihood: p (xn | θ)
• a posteriori information: p (θ | x1, x2, . . . , xn)

p (x1, x2, . . . , xn) =
∫ n∏

i=1
p (xi | θ) p (θ) dθ

V. Naive Bayes

V. A. Introduction

Remarque: Contrary to its name, “Naive Bayes” is not a Bayesian method.

Let’s Consider the following problem of classification x ∈ Xp 7−→ y ∈ {1, 2, . . . ,M}.

Here, x = (x1, x2, . . . , xp) is a vector of descriptors (or features): ∀i ∈ {1, 2, . . . , p} , xi ∈ X, with
X = {1, 2, . . . , K} (orX = R).

Goal: Learn p (y | x).

A very naive method will trigger o� a combinatorial explosion: θ ∈ RKp .

Bayes formula gets us:

p (y | x) = p (x | y) p (y)
p (x)

TheNaiveBayesmethodconsists inassuming that the featuresxi areall conditionally independent
from the class, hence:

p (x | y) =
p∏
i=1

p (xi | y)

Then, the Bayes formula gives us:

p (y | x) =
p (y)

p∏
i=1

p (xi | y)

p (x) =
p (y)

p∏
i=1

p (xi | y)
∑
y′
p (y′)

p∏
i=1

p (xi | y′)

We consider the case where the features take discrete values. Consequently the new graphical
model contains only discrete random variables. Then, we can write a discrete model as an expo-
nential family. Indeed we can write:

log p (xi = k | y = k′) = δ (xi = k, y = k′) θikk′

and
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log p (y = k′) = δ (y = k′) θk′

We can see that the dummy functions δ(xi = k, y = k′) and δ(y = k′) are the su�icient statistics of
the joint distributionmodel for y and the variablesxi, where θikk′ and θk′ are canonical parameters.
Thus , we can write:

log p(y, x1, . . . , xp) =
∑
i,k,k′

δ(xi = k, y = k′)θikk′ +
∑
k′
δ(y = k′)θk′ − A((θikk′)i,k,k′ , (θk′)k′)

WhereA((θikk′)i,k,k′ , (θk′)k′) is the log-partition function.

We have rewritten the joint distribution model of (y, x1, . . . , xp) as an exponential family. Given
that the maximum of likelihood estimator of an exponential family, where the canonical parame-
ters are not combined, is also the maximum entropy estimator; as seen in a previous course and
provided that the statistical moments of the su�icient statistics equal their empirical moments.

Thus, if we introduce
Nikk′ = # {(xi, y) = (k, k′)}

N =
∑
i,k,k′

Nikk′ ,

Themaximum likelihood estimator must satisfy the moment constraints

p̂ (y = k′) =

∑
i,k
Nikk′

N
et p̂ (xi = k | y = k′) = Nikk′∑

k′′
Nik′′k′

,

which define them completely.

Then, we can write the estimators of the canonical parameters as:

θ̂ikk′ = log p̂ (xi = k | y = k′) et θ̂k′ = log p̂ (y = k′) .

However, our goal is to obtain a classificationmodel, that is to say, amodel of only the conditional
probability law. From the approximated generativemodel and applying the Bayes rule we can get:

log p̂ (y = k′ | x) =
p∑
i=1

log p̂ (xi | y = k′) + log p̂ (y = k′)− log
∑
k′

(
p̂ (y = k′)

p∏
i=1

p̂ (xi | y = k′)
)

We can re write the conditional model as an exponential family

log p (y | x) =
∑
i,k,k′

δ(xi = k, y = k′)θikk′ +
∑
k′
δ(y = k′)θk′ − log p(x)
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Its su�icient statistics and canonical parameters are equal to those of the generative model, but
seen as functions of the randomvariable y, given thatx is fixed (we couldwriteφx,i,k,k′(y) = δ(xi =
k, y = k′)). As for the log-partition function, it is now equal to log p(x).

Warning: θ̂ikk′ is the maximum likelihood estimator in the generative model which, usually, is not
equal to the maximum likelihood estimator in the conditional model.

V. B. Advantages and Drawbacks

Advantages:

• Doable in line.
• Computationally tractable solution.

Drawbacks:

• Generative: generative models produce good estimator whenever the model is “true”, or in
statistical wordswell specified, which means that the process that generate the real data in-
duce a distribution equal to the one of the generative model. When the model is not well
specified (which is the most common case) we’d better use a discriminative method.

V. C. Discriminativemethod

The problem that we have considered in the previous section is the generative model for classifi-
cation in K classes. How to learn, in a discriminatory way , a classifier in K classes? Is it possible to
use an exponential family?

We have already seen the logistic regression for 2 classes classification:

p (y = 1 | x) =
exp

(
ωTx

)
1 + exp (ωTx)

Let’s study the K-multiclass logistic regression:

p (y = k′ | x) =
exp

(∑p
i=1

∑K
k=1 δ (xi = k) θikk′

)
∑M
k′′=1 exp

(∑p
i=1

∑K
k=1 δ (xi = k) θikk′′

)
= exp

( p∑
i=1

K∑
k=1

δ (xi = k) θikk′ − log
(

M∑
k′′=1

exp
( p∑
i=1

K∑
k=1

δ (xi = k) θikk′′
)))

= exp
(
θTk′φ (x)− log

(
M∑

k′′=1
exp

(
θTk′′φ (x)

)))

=
exp

(
θTk′φ (x)

)
∑M
k′′=1 exp (θTk′′φ (x))
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Although we have built the model from di�erent staring consideration, the resulting modelling
(that is the set of possible distribution) is of the same exponential family than the Naive Bayes
model.

Nonetheless, the fittedmodel in a discriminatory approachwill be di�erent from the one fitted in a
generative approach: the fitting of the K-multiclass logistic regression results from the maximisa-
tion of the likelihood of the classes y(j) of a set of learning, given that x(j) are fixed. In other words,
the fitting is obtained by computing the maximum likelihood estimator in the conditional model.
Unlike what happens in the generativemodel, the estimator can’t be obtained in a analytical form
and the learning requires solving a numerical optimisation problem.
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I. Review on probabilities

In this section we recall some basic notations and properties of random variables.

NOTATION I. .1. The probability that a random variableX takes the value x is denoted p(X =
x). In this document, we simply write p(X) to denote a distribution over the random variable
X , or p(x) to denote the distribution evaluated for the particular value x. It is similar for more
variables.

Fundamental rules For two random variablesX, Y we have

• Sum rule:
p(X) =

∑
Y

p(X, Y )

• Product rule:
p(X, Y ) = p(Y |X)p(X)

• BAYES formula2:
p(X | Y ) = p(Y |X)p(X)

p(Y )

I. A. Joint distributions

Let X1, X2, . . . , Xn be random variables with joint distribution P(X1 = x1, X2 = x2, . . . , Xn =
xn) = pX(x1, . . . , xn) = p(x)where x stands for (x1, . . . , xn).

GivenA ⊂ J1, nK, we denote the marginal distribution of xA by:
p(xA) =

∑
xAc

p(xA, xAc)

With this notation, we can write the conditional distribution as:

p(xA | xAc) = p(xA, xAc)
p(xAc)

We also recall the so-called "chain rule" stating:

p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)
2note that BAYES formula is not a Bayesian formula in the sense of Bayesian statistics
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I. B. Independence and conditional independence

LetA,B, andC be disjoint subsets of J1, nK. Wewill say thatXA is (marginally) independent ofXB

and writeXA |= XB if

∀(xA, xB), p(xA, xB) = p(xA)p(xB) or equivalently p(xB) > 0 =⇒ p(xA | xB) = p(xA)

Similarly we will say thatXA is independent fromXB conditionally onXC (or givenXC) and we
will writeXA |= XB |XC if

∀xA, xB, xC , p(xC) > 0 =⇒ p(xA, xB | xC) = p(xA | xC)p(xB | xC)

or equivalently if

∀xA, xB, xC , p(xB, xC) > 0 =⇒ p(xA | xB, xC) = p(xA | xC)

More generally we will say that the (XAi)1≤i≤k aremutually independent if

∀xA1 , . . . , xAk , p(xA1 , . . . , xAk) =
k∏
i=1

p(xAi)

and that they aremutually independent conditionally onXC (or givenXC) if

∀xA1 , . . . , xAk , xC , p(xC) > 0 =⇒ p(xA1 , . . . , xAk | xC) =
k∏
i=1

p(xAi | xC)

REMARK I. .2. Note that the conditional probability p(xA, xB | xC) is the probability distribution
over (XA, XB) ifXC is known to be equal to xC . In practice, it means that if the value ofXC is
observed (e.g. via a measurement) then the distribution over (XA, XB) is p(xA, xB | xC). The
conditional independence statementXA |= XB |XC should therefore be interpreted as "when
the value ofXC is observed (or given),XA andXB are independent".

REMARK I. .3. [PAIRWISE INDEPENDENCE VS MUTUAL INDEPENDENCE]
Consider a collectionof randomvariables (X1, . . . , Xn). We say that these variables arepairwise
independent if Xi |= Xj for all 1 ≤ i < j ≤ n. Note that this is di�erent than assuming that
X1, . . . , Xn are mutually (or jointly or globally) independent. A standard counter-example is as
follows: given two variablesX, Y that are independent coin flips define Z via the XOR function
⊕withZ = X⊕Y . Then, the three random variablesX, Y, Z are pairwise independent, but not
mutually independent (exercise). The notations presented for pairwise independence could be
generalized to collections of variables that aremutually independent.

Three facts about conditional independence

• It ispossible to repeat theconditional variable:X |= (Y, Z) |Z,W is the sameas (X,Z) |= Y |Z,W .
The repetition is redundant but may be convenient notation.

• We have decomposition: ifX |= (Y, Z) |W thenX |= Y |W andX |= Z |W .
• The chain rule applies to conditional distributions:

p(x, y | z) = p(x | y, z)p(y | z)
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Independent and identically distributed A set of random variables is independent and identi-
cally distributed (i.i.d.) if each random variable has the same probability distribution as the others
and all are mutually independent.

II. Review on LAGRANGE duality

Lagrangian Consider the following convex optimization problem:

minx∈X f(x)
subject to Ax = b

where f is a convex function,X ⊂ Rp is a convex set included in the domain3 of f ,A ∈ Mn p and
b ∈ Rn.

The Lagrangian associated with this optimization problem is defined as

L : X × Rn −→ R
x, λ 7−→ f(x) + λ>(Ax− b)

The vector λ is called the LAGRANGEmultiplier vector.

Lagrangedual function TheLAGRANGEdual function isdefinedasg : λ ∈ Rn 7−→ minx ∈X L(x, λ).
The problem of maximizing g is known as the LAGRANGE dual problem.

max-min inequality For any f :W ×Z ⊂ Rn × Rm −→ R, we have

∀w ∈ W , f(w, z) ≤ max
z∈Z

f(w, z) =⇒ min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z)

=⇒ max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z)

Duality It is easy toshowthatmaxλ L(x, λ) =
{

f(x) ifAx = b
+∞ otherwise whichgivesusminx∈X f(x) =

minx∈X maxλ L(x, λ). For the above equations we have:

max
λ

g(λ) = max
λ

min
x∈X
L(x, λ) ≤ min

x∈X
max
λ
L(x, λ) = min

x∈X
f(x)

This inequality says that the optimal value d∗ of the LAGRANGE dual problem always lower-bounds
the optimal value p∗ of the original problem. This property is called theweakduality. If the equality
d∗ = p∗ holds, then we say that the strong duality holds. Strong duality means that the order of
the minimization over x ∈ X and the maximization over λ can be switched without a�ecting the
result.

3the domain of a function is the set on which the function is well-defined and finite
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SLATER’sconstraintqualification lemma If thereexistsanx in the relative interiorofX∩{Ax = b}
then strong duality holds.

Note that all the above notions and results are stated for the fixed problem introduced above. For
a more general problem andmore details about LAGRANGE duality, please refer to [?] (chapter 5).

III. Review on di�erentials

III. A. Generalities

Di�erentiable function A function f is di�erentiable at x ∈ Rd if there exists a linear form dfx
such that:

∀h ∈ Rd, f(x+ h) = f(x) + dfx(h) + o(‖h‖)
SinceRd is aHILBERTspace,weknow in that case that thereexistsg ∈ Rd such thatdfx(h) = 〈g | h〉.
We call g the gradient of f and denote it by∇f(x).
EXAMPLE III. .1.

• If f : x 7−→ a>x + b then we have f(x + h) = f(x) + a>h and thus f is di�erentiable and
∇f(x) = a.

• If f : x 7−→ 1
2x
>Ax then we have:

f(x+ h)− f(x) = 1
2(x+ h)>A(x+ h)− 1

2x
>Ax = 1

2(x>Ah+ h>Ax) + o(‖h‖)

The gradient is then∇f(x) = 1
2(Ax+ A>x).

Composition of di�erentials If f and g are di�erentiable respectively at g(x) and x, then f ◦ g is
di�erentiable at x and:

d(f ◦ g)x(h) = dfg(x)(dgx(h)) = dfg(x) ◦ dgx(h)

III. B. Some practical di�erentials

• Let f : S++
d (R) −→ R,Λ 7−→ log(det Λ). We have forH ∈ S++

d (R):

log(det(Λ+H)) = log(det(Λ 1
2 (Id+Λ− 1

2HΛ− 1
2 )Λ− 1

2 )) = log(det Λ)+log(det(Id+Λ− 1
2HΛ− 1

2 ))

As H̃ = Λ− 1
2HΛ− 1

2 is symmetric, it it diagonalizable and if (λi)1≤i≤d are its eigenvalues:

log(det(Id + H̃)) =
d∑
i=1

log(1 + λj) =
d∑
i=1

λj + o
( ∥∥∥H̃∥∥∥ ) = Tr(H̃) + o(‖H‖)

Thus f is di�erentiable atΛ and:
dfΛ(H) = Tr(H̃) = Tr(HΛ−1) ∇f(Λ) = Λ−1

• Let f : Λ 7−→ Tr(ΛA)whereA is a fixed symmetric matrix. We have:
f(Λ +H)− f(Λ) = Tr(HA)

Thus f is di�erentiable is∇f(Λ) = A.
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IV. Optimizationmethods

IV. A. First-order methods

Let f : Rp −→ R be the convex C1 function that we want to minimize. A descent direction at point
x is a vector d such that 〈d | ∇f(x)〉 < 0. Theminimization of f can be done by applying a descent
algorithm, which iteratively takes a step in a descent direction, leading to an iterative scheme of
the form

xt+1 = xt + εtdt

where εt is the stepsize. The direction dt is o�en chosen as the opposite of the gradient of f at point
xt:

dt = −∇f(xt)

There are several choices for εt:

• a constant step: εt = ε. But the scheme does not necessarily converge,
• a decreasing step size: εt ∝ 1

k
with

∑
k ε

t = +∞ and
∑
k(εt)2 < +∞. In that case the scheme

is guaranteed to converge.
• one can determine εt by doing a line searchwhich tries to findminε>0 f(xt + εdt):

– either exactly but this is costly and rather useless in many situations,

– or approximately (ARMIJO line search). This is a very e�ective method.

IV. B. Second-order methods

Assume now that f is a C2 function. We write the second-order TAYLOR-expansion of f at a point
xt:

f(x) = f(xt) + (x− xt)>∇f(xt) + 1
2(x− xt)>Hf(xt)(x− xt)︸ ︷︷ ︸

gt(x)

+o
( ∥∥∥x− xt∥∥∥2 )

We know that a local optimum x∗ is reached when

∇f(x∗) = 0 and H(f(x∗)) � 0

In order to solve such a problem, we are going to use the NEWTON’s method. If f is a convex func-
tion, then∇gt(x) = ∇f(xt) + Hf(xt)(x − xt) and we only need to find x∗ so that∇gt(x) = 0,
i.e. we set xt+1 = x>− (Hf(xt))−1∇f(xt). If the Hessianmatrix is not invertible, we can regularize
the problem andminimize gt(x) + λ‖x− x>‖2 instead.

In general the previous update, called the pure NEWTON step does not lead to a convergent algo-
rithm even if the function is convex!

In general it is necessary to use the so-called damped NEWTON method, to obtain a convergent
algorithmwhich consists in doing the following iterations:

xt+1 = xt − εt(Hf(xt))−1∇f(xt)
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where εt is set with the ARMIJO line search.

This method may be computationally costly in high dimension because of the inverse of the hes-
sian matrix that needs to be computed at each iteration. For some functions, however, the pure
NEWTON’s method does converge. This is the case for logistic regression.

In the context of non-convex optimization, the situation is more complicated because the Hessian
can have negative eigenvalues. In that case, so-called trust region methods are typically used.

V. Review on graphs

DEFINITION V. .1. [GRAPH]
A graph is a pair G = (V,E) comprising a set V of vertices or nodes together with a set E ⊂
V × V of edges or arcs, which are 2-element subsets of V .

REMARK V. .1. In this course we only consider graphs without self-loop.

V. A. Undirected graphs
DEFINITION V. .2. [UNDIRECTED GRAPH]
G = (V,E) is an undirected graph if for all u 6= v ∈ V × V we have:

(u, v) ∈ E ⇐⇒ (v, u) ∈ E

Figure 2: Two di�erent ways to represent an undirected graph

DEFINITION V. .3. [NEIGHBOUR]
We defineN (u), the set of the neighbours of u, as

N (u) = {v ∈ V | (v, u) ∈ E}

Figure 3: A vertex and its neighbours

DEFINITION V. .4. [CLIQUE]
A totally connected subset of vertices or a singleton is called a clique.
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Figure 4: A clique

DEFINITION V. .5. [MAXIMAL CLIQUE]
Amaximal cliqueC is a clique which is maximal for the inclusion order, i.e.C is a clique and for
all v /∈ C,C ⊂ {v} is not a clique.

Figure 5: A maximal clique

DEFINITION V. .6. [PATH]
A path is a sequence of connected vertices that are globally distinct.

u
v

Figure 6: A path from u to v

DEFINITION V. .7. [CYCLE]
A cycle is a sequence of vertices (v0, . . . , vk) such that:

• v0 = vk,
• ∀j ∈ J0, k − 1K, (vj, vj+1) ∈ E,
• ∀i, j ∈ J0, kK, vi = vj =⇒ {i, j} = {0, k}.

DEFINITION V. .8. LetA,B,C be distinct subsets of V . C separatesA andB if all paths fromA
toB go throughC.

DEFINITION V. .9. [CONNECTED COMPONENT]
A connected component is a subgraph induced by the equivalence class of the relation uRv if
and only if exists a path from u to v.
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A

B

C

Figure 7: C separatesA andB

Figure 8: A graph with 2 connected components

In this coursewewill consider there is only one connected component. Otherwisewe candealwith
them independently.

V. B. Oriented graphs
DEFINITION V. .10. [PARENT, CHILDREN, ANCESTOR, DESCENDANT]

• v is a parent of u if (v, u) ∈ E,
• v is a children of u if (u, v) ∈ E,
• v is an ancestor of u if there exists a path from u to v,
• v is a descendant of u if there exists a path from u to v.

Figure 9: An oriented graph with a cycle

DEFINITION V. .11. [DIRECTED ACYCLIC GRAPH]
A directed acyclic graph (DAG) is a directed graph without any cycle.

DEFINITION V. .12. [TOPOLOGICAL ORDER]
LetG = (V,E) a graph with n = card(V ) < +∞. I is a topological order if

• I is a bijection from J1, nK to V ,
• If u is a parent of v, then I(u) < I(v).
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PROPOSITION V. .1. G = (V,E) has a topological order if and only ifG is a DAG.

PROOF The direct implication is easy. Reciprocally, use a depth-first search.

VI. Review onMARKOV chains

In this annex we assume that we work with random variables taking values in a set X with |X | =
K < +∞. HoweverK is typically very large since it corresponds to all the configurations that the
set of variables of a graphical model can take.

Consider (Xt)t∈N a sequence of random variables.

DEFINITION VI. .1. [TIME HOMOGENOUS MARKOV CHAIN]
(Xt)t∈N is a time homogenous MARKOV chain if

∀t ≥ 0, ∀(x, y) ∈ X , p(Xt+1 = y |Xt = x,Xt−1, . . . , X0) = p(Xt+1 = y |Xt = x) = S(x, y)

S is called transition matrix of the MARKOV chain.

PROPOSITION VI. .1. IfK < +∞, then S is a stochastic matrix:

∀x, y ∈ X , S(x, y) ≥ 0 and S1 = 1

DEFINITION VI. .2. [STATIONARY DISTRIBUTION]
The distribution π onX is stationary if

S>π = π or equivalently ∀y ∈ X , π(y) =
∑
x∈X

π(x)S(x, y)

If p(XT0) = π with π a stationary distribution of S, then we have p(Xt) = π for all t ≥ T0.

THEOREM VI. .2. [PERRON-FROBENIUS]
Every stochastic matrix S has at least one stationary distribution.

PROPOSITION VI. .3. One has:

∀m ∈ N,∀x, y, Sm(x, y) = p(Xt+m = y |Xt = x)

DEFINITION VI. .3. [IRREDUCIBLE MARKOV CHAIN]
A MARKOV chain is irreducible if

∀x, y ∈ X , ∃m ∈ N∗ | Sm(x, y) > 0

DEFINITION VI. .4. [PERIOD OF A STATE]
The greatest common divider of the elements in the set {m > 0 | Sm(x, x) > 0} is called the
period of a state. When the period is equal to 1 the state is said to be aperiodic.

MVA 2019/2020 Probabilistic Graphical Models Page 119 of 122



ANNEX

DEFINITION VI. .5. [APERIODIC MARKOV CHAIN]
If all the states of a MARKOV chain are aperiodic the chain is said to be aperiodic.

DEFINITION VI. .6. [REGULAR MARKOV CHAIN]
A MARKOV chain is regular if S(x, y) > 0 for all x, y ∈ X .

REMARK VI. .1. A regular MARKOV chain is clearly irreducible aperiodic. The converse is not true.

PROPOSITION VI. .4. If aMARKOV chain on a finite state space is irreducible and aperiodic, then
its transitionmatrix has a unique stationary distributionπ and for any initial distribution q0 onX0,
if qt = p(Xt), then qt −→

t→+∞
π.

REMARK VI. .2. If the state space is not finite, an additional assumption is needed on theMARKOV
chain: it needs to be recurrent positive. We do not define this notion in this course.

We want to construct an irreducible aperiodic transition S whose stationary distribution is

π(x) = 1
Z

∏
c∈C

ψc(xc)

DEFINITION VI. .7. [DETAILED BALANCE]
A MARKOV chain is reversible if exists a probability distribution π such that

∀x, y ∈ X , π(x)S(x, y) = π(y)S(y, x)

This equation is called the detailed balance equation and can be reformulated as

p(Xt+1 = y,Xt = x) = p(Xt+1 = x,Xt = y)

PROPOSITION VI. .5. If π satisfies detailed balance, then π is a stationary distribution.

PROOF One has
∑
x∈X S(x, y)p(x) = ∑

x p(y)S(y, x) = p(y)∑x∈X S(y, x) = p(y).

VII. SCHUR complement

Let us consider the block matrixM =
(
A L
R U

)
. Our goal is to explicit the blocks of its inverse in

terms of the initial blocksA,L, U,R4.

We can block diagonalizeM by premultiplying it byD and postmultiplying byG, where:

D =
(

I 0
−RA−1 I

)
and G =

(
I −A−1L
0 I

)
Indeed:

DMG =
(
A 0
0 U −RA−1L

)
4L stands for le�,U for upperR for right
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and we denote by∆ this block diagonal matrix.

DEFINITION VII. .1. [SCHUR COMPLEMENT]
The SCHUR complement ofM w.r.t.A is [M/A] = U −RA−1L.

By symmetry we obtain the SCHUR complement ofM w.r.t. U as [M/U ] = A− LU−1R.

From the previous calculations we obtain

LEMMA VII. .1. [DETERMINANT LEMMA]

det(M) = det(A) det([M/A]) = det(U) det([M/U ])

We also have the following result:

LEMMA VII. .2. [POSITIVITY LEMMA]
IfM is symmetric thenM < 0 if and only ifA< 0 and [M/A]< 0.

PROOF IfM is symmetric thenG = D>. Then

A< 0 and [M/A]< 0 ⇐⇒ ∀x, x>∆x ≥ 0
⇐⇒ ∀x, (D>x)>M(D>x) ≥ 0
⇐⇒ ∀y, y>My ≥ 0 asDis nonsingular ⇐⇒M < 0

PROPOSITION VII. .3. [WOODBURY-SHERMAN-MORRISON FORMULA]
M is nonsingular if and only ifA and [M/A] are. In this case, we have:

[MA]−1 = U−1 + U−1R[M/U ]−1LU−1

PROOF As∆−1 = G−1M−1D−1, one hasM−1 = G∆−1D, fromwhich we obtain:

M−1 =
(
A−1 + A−1L[M/A]−1RA−1 A−1L[M/A]−1

−[M/A]−1RA−1 [M/A]−1

)

Doing the same calculation with the decomposition associated to U , we obtain:

M−1 =
(

[M/U ]−1 −U−1R[M/U ]−1

−[M/U ]−1LU−1 U−1 + U−1R[M/U ]−1LU−1

)

Auseful consequenceof theSCHURcomponent is toprove rigorously the following inversion lemma:

LEMMA VII. .4. [MATRIX INVERSION]
LetX ∈ Rp×n. Then for any λ:

(I + λX>X)−1 = I − λX(I + λXX>)−1X>
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In practice, we o�en want to invert matrix such as I + λX>X whereX is a design matrix5 and we
usually have n � p. In that case, the inversion lemma replaces the problem of inverting a square
matrix of dimension n (complexity inO(n3)) by a less costly one of dimension p.

PROOF We can assume λ 6= 0. We considerM =
(
I X
X> − 1

λ
I

)
=
(
A L
R U

)
.

Then [M/U ]−1 = (I + λX>X). Using the WOODBURY-SHERMAN-MORRISON formula, it comes:

[M/U ]−1 = A−1 + A−1L[M/A]−1RA−1

which gives us the result.

5n is the number of samples and p the number of features
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