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Introduction: complex data modelization

Problem To model complex data, one is confronted with two main questions:

e how to manage the complexity of the data to be processed?
e how to infer global properties from local models?

These questions lead to 3 types of problems:

e the representation of data: how to obtain a global model from a local model?
e the inference of the distributions: how to use the model?
e the learning of the model: what are the parameters of the model?

For instance we present some models associated to classical problems.

Image Consider an x n (pixels) monochromatic image. If each pixel is modelled by a discrete
random variable (so there are n? of them), then the image can be modelled using a grid.

=00
O—0—0)

OO0

Figure 1: Grid modelling the image

Bioinformatics Consider a long sequence of n DNA bases. If each base of this sequence is mod-
elled by a discrete random variable (that, in general, can take values in {A, C, G, T}), then the
sequence can be modelled by a MARKOV chain:
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Figure 2: Graph of a MARKOV chain

Finance Consider the evolution of stock prices in discrete time, where we have values at time ¢.
It is reasonable to postulate that the change of price of a stock at time ¢ + 1 only depends on its
price or the price of all stocks at time ¢.

Q-.

Figure 3: Possible graph for 2 stocks

Speech processing Considerthe syllables of aword and the way they are interpreted by ahuman
ear or by a computer. Each syllable can be represented by a random sound. The objective is then
to retrieve the word from the sequence of sounds heard or recorded. In this case, we can use a
hidden MArRkov model:

sill sil2 é
O O O
Y (1) Y (2) Y (3)

Figure 4: Graph for speech processing

Text Consider a text with 1000000 words. The text is modelled by a vector such that each of its
components equals to the number of times each keyword appears. This is usually called the “bag
of words” model. This model seems to be weak, as it does not take the order of the words into
account. However, it works quite well in practice. A so-called naive BAYES classifier can be used for
classification (for instance spam vs non spam).

It is clear that models which ignore the dependence among variables are too simple for real-world
problems. On the other hand, modelsin which every random variable is dependent all or too many
other ones are doomed both for statistical (lack of data) and computational reasons. Therefore, in
practice, one has to make suitable assumptions to design models with the right level of complexity,
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so that the models obtained are able to generalize well from a statistical point of view and lead to
tractable computations from an algorithmic perspective.

[todo]

General issues in this class [todo]

1. Representation — DGM, UGM / parameterization — exponential family
2. Inference (computing p(z 4 | x5)) — sum-product algorithm

3. Statistical estimation — maximum likelihood, maximum entropy
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CHAPTER1

Maximum likelihood estimation

In Annex |. you can find a review of basic probabilities.

I. Statistical models

DEFINITION |. .1. [STATISTICAL MODEL]

A (parametric) statistical model Pg is a collection of probability distributions (or a collection of
probability density functions?) defined on the same space and parameterized by parameters ¢
belonging to a set © C RP. Formally:

Po = {po |0 € O}

9in which case they are all defined with respect to the same base measure, such as the LEBESGUE measure in R?

BERNouLLI model Consider a binary random variable X that can take the value 0 or 1.
If p(X = 1) is parametrized by 6 € [0, 1], we have:

p(X=1)=40 and p(X=0=1-10
that we can summarized by p(X = x) = (1 — 6)'~* and we write X ~ B(6).
The BERNoOULLI model is the collection of these distributions for € © = [0, 1]
Peeanoun = {B(0) |0 € [0, 1]}

Binomial model A binomial random variable B(6, n) is defined as the value of the sum of n i.i.d.
BERNOULLI random variables with parameter § € © = [0, 1]. The distribution of a random variable
N ~ B(0,n) is given by

Vk € [0,N], p(N=kFk)= (Z)ek(l _ gk

The binomial model is then
Pbinomial = {B(G, Tl) |‘9 € [07 1]}

Note that in many cases n is known and thus only ¢ is the parameter, but sometimes we can have
both # and n as parameters.
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CHAPTER 1 - MAXIMUM LIKELIHOOD ESTIMATION

Multinomial model Consider a discrete random variable C that can take values in [1, K]. The
random variable C' can be represented by a K-dimensionalrandomvariable X = (1o—1, lco—s, ..., lo=k)
and we have the following event correspondance: {C' = k} = { X} = 1}.

If we parametrize p(C' = k) by a parameter 7, € [0, 1], then by definition we also have
Vke[[l,K]], p(szl):ﬂ'k

and we know that & | 7, = 1. The probability distribution can be written as:
K K
Vo € Xk, p(z)=]]m* where X = {:c c{0,1}° | Y ay = 1}
k=1 k=1
We will denote M(1, 7y, ..., 7x) such a discrete distribution'. The multinomial modelis:

K
Pruttinomial = {M(LTF) |7T S Rf, Z T = 1}

k=1

Consider now (1, ..., C, i.i.d. random variables of distribution M(1,7), and denote by N} the
number of variables equal to k, then the joint distribution of (Ny, Na, ..., Ni) is called a multino-
mial distribution of parameters n and 7, denoted by M (n, 7). With the second representation, we

have that M(n, ) is the law of 37" | X; where (X;)1<i<n S M(1, 7). It takes the form:

n! K

_ s
— HK | k
k=1 Tk 4

p<n1>n27 e JZK)

The multinomial M(n, 7) istothe M (1, 7) distribution as the binomial distribution is to the BERNOULLI
distribution. In the rest of this course, when we will talk about multinomial distributions, we will
always refer to a M (1, 7) distribution.

Gaussian models The Gaussian distribution is also known as the normal distribution. A/ (u, o?)
the normal distribution with mean i € R and variance o2 > 0 can be written in the form

1 (v — p)?
VeeR, p(x)= Wexp(— T)

The model s then:
Pcaussian = {N(M, 0'2) | we Ro> 0}

The multivariate Gaussian distribution of a d-dimensional vector with mean ;. € R¢ and covariance
¥ € Mgy4(R) symmetric positive definite matrix takes the form

1 1
2m) 42 | Jdet(X)

Vre RY,  plx) = ( exp (- ;(1’ —)'S (@ - )

and is denoted by NV(u, X). Tt is a well-known property that  is equal to the expectation of the
law and that X is the covariance matrix of the law. The model is then:

Pruttivariate Gaussian = {N(M, 22) |,u € Rd, PINS Sd(]R), - 0}

Tnote that this stands for C' and X: we choose the representation we want, depending on the context
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CHAPTER 1 - MAXIMUM LIKELIHOOD ESTIMATION

Il. Parameter estimation by maximum likelihood

II.A. Definition

Maximum likelihood estimation is a method of estimating the parameters of a statistical model.

Let Pg be a statistical modeland x4, . . . , z,, bei.i.d. observations from a distribution py- for a fixed
unknown 6* € ©. As the name suggests, the maximum likelihood estimator is the parameter Oye
under which the data are most likely.

DEFINITION Il. .1. [LIKELIHOOD]
The likelihood of x4, . . ., z,, is defined as the function:

L: 0 — [0,1]
0 — po(z1,...,2n) =1 po(zs)

We can also consider? the log-likelihood:

0:0€0—logL(0) =" logpy(z;)

i=1

%in practice it is often more convenient to work with the log-likelihood function

DEFINITION II. .2. [MAXIMUM LIKELIHOOD ESTIMATOR]
The maximum likelihood estimator of §* is defined as:

Ouie = argmaxy g £(0) = argmax,ce £(6)

Next, we will apply this method for the models previously presented.

II.B. MLE for the Bernoulli model

Consider xq, o, . .., z, i.i.d. observations of B(6). We have

0(0) = logpe(z;) = log 8% (1 — 6) " = nylog(#) + (n — n1)log(1 — 6)
=1 =1

wheren; = >, x; = >, 1,.-1 is the number of success in our sample.

As £(0) is strictly concave, it has a unique maximizer, and since the function is in addition differen-

tiable, its maximizer Oy is the zero of its gradient. One can compute:

0 ng n—mn

= 500) = 5 ~

Vi) 7 g
and the zero of the gradient is ”*. Therefore we have

n
A ny 1
e = — = — Z;
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CHAPTER 1 - MAXIMUM LIKELIHOOD ESTIMATION

II.C. MLE for the multinomial model

Consider xy, za, ..., x, € Xk i.i.d. observations of M(1, 7). We have
n n K n K K
= logp(z;) =) _log ( 1T ﬂ,f”“) => > zylogm =Y nylogm
=1 =1 k=1 i=1 k=1 k=1

wheren, = > |z = >, 1,1 is the number of observations of the value k.

We need to maximize this quantity subject to the constraint Y5 7, = 1and 7, > Oforall k €
[1, K1

We forget the inequality constraint and we try to minimize f(7) = —{(7) = — >~ nglogms
subject to the constraint 1" = 1. We introduce the Lagrangian of this problem (see Annex II. for
more details):

ﬁ(ﬂ')\ anlOgﬂ'k—F)\(Zﬂ'k—l)

k=1 k=1

Clearly, as all (nx)1<k<x are nonnegative, f is convex and this problem is a convex optimization
problem. Moreover, it is trivial that there exist a strictly feasible point?, so by SLATER’s constraint
qualification, the problem satisfies strong duality. Therefore, we have

min f(m) = max min L(m, \)

As L(., \) is convex, it suffices to find a zero of the gradient of £ w.r.t. 7 to find min, £(m, A). This

yields

oL

Substituting these into the constraint Y& | m, = 1 we get A = Y&  n, = n. Finally we get the

MLE of 7:
N 1 &
AME = — E T
MLE = 2

I1.D. MLE for the univariate Gaussian model

Consider x1, zy, . . ., z,, i.i.d. observations a N (i, 0%). We have
1 (i — p)®
U(p,0%) =Y _10g o (w:) log exp( —~—55—
ZZI K Z [\/— ( 252 )}
n 1 & (2 — p)?
= _Mog(am) = 21
5 l0g(27) — 7 log(o 2; g

We need to maximize this quantity with respect to iz and o2. By taking derivative w.r.t. ;2 and then
o2, itis easy to obtain that the pair (fiw.e, 54.¢), defined by

12 .9 12 .\ 2
== % and e = — > _(xi — 1)
ni ni4
2that is to say a vector m such that 7y, o, . . ., Tx are positive and Zle =1
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CHAPTER 1 - MAXIMUM LIKELIHOOD ESTIMATION

is the only stationary point of the likelihood. One can actually check (for example computing the
Hessian w.r.t. (i, 0%)) that this is actually a maximum. We will have a confirmation of this in the
chapter on exponential families (see Chapter 7).

Il. E. MLE for the multivariate Gaussian model
Let xy, ..., 7, be ani.i.d. sample of N'(u, X)) with u € R?and ¥ € S (R) definite positive. The
log-likelihood is given by:

U, 2) = logpus(z;) = —7 log(2m) — B log (det X2) 5 Z Ny — p)

=1

In this case, one should be careful that these log-likelihoods are not concave w.r.t. the pair of pa-
rameters (i, X). They are concave w.r.t. u when 3 is fixed but they are not even concave w.rt. ¥
when p is fixed.

Let us first differentiate ¢ w.r.t. . We need to differentiate for a fixed z:

p— (x = p) TS @ — p)
which is equal to f o g where:

f: RT — R g: R&Y — R4
Te-1 and
Yy — oy Xy T S )

Using the example of Annex Ill. , we know that
Vi, =31y and Vg, = -1
as X! is symmetric. By the differentiation of a composition we obtain:

Vfoguh) =" (u—x)

Thus we have:

n

Villn 5) = 35 = ) = 5 e = 3 m) = 57 (s )

=1

where 7 = L
n

MLE of u:

* 1 x;. One can check that there is a unique zero of this gradient, which give the
i Ly
= — X;
HUMLE n

Let us now differentiate / w.rt. A = X~1. We have:

n

£ D) = " og(27) + 2 log(det A) — 2 3"~ )T A, — )

=1
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CHAPTER 1 - MAXIMUM LIKELIHOOD ESTIMATION

All terms of the sum are real number, so are equal to their trace. Thus:

U1, X) = —”2d log(27) + % log(det A) — ;i Tr (2 — 1) "Aa — )

=1

d ~
= —% log(27) + g log(det A) — gTr(AE)

where X = LS (2, — pi)(z; — p) " is the empirical covariance matrix.

We need to differentiate A — log det()\) and A — Tr(AY). One can obtain (see Annex IIl. for
details): ) )
Viogdet(\) = A1 =% and VTr(AY) =%

And the gradient of £ w.rt. A is:
n

Vil = 5

(5-%)
which is equal to zero if and only if © = X.

Finally we have shown that the pair

ﬂ =T = le and EMLE = *Z([L’l —T>($l —T)T
] i=1

n-:

is the only stationary point of the likelihood. One can actually check (for example computing the
Hessian w.r.t. (1, ) that this is actually a maximum. We will also have a confirmation of this in the
lecture on exponential families.

REMARK II..1. Note that we assumed that A was invertible, which is an implicit condition when
writing log det A. This implies that in a rigorous sense the maximum likelihood estimator is un-
defined when ¥ is not invertible. In practice, the maximum likelihood estimator is extended by
continuity to the rank deficient case.
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CHAPTER 2

Regression

In the last chapter, we considered a model with one node, i.e. with a unique variable and thus
distribution. In this lecture, we work with two nodes: one corresponding to an input X, and the
other corresponding to an output Y.

Recall that when dealing with two random variables X and Y, one can use a generative model,
i.e. which models the joint distribution p(X, Y), or one can use instead a conditional model', which
models the conditional probability of the output, given the input p(Y | X). The two following mod-
els, linear regression and logistic regression, are conditional models.

I. Linear regression
We consider the following model: we assume that Y € R depends linearly on X € RP: there exists
aw € RR? called weighting vector and o2 > 0 such that
Y|X ~Nw'X, o)
which can be rewritten as

Y=w'X+e¢ where e ~ N(0, 0%)

REMARK I. 1. Itis possible to add an offset w, € R, thatis, if the modelisY = w'X + w, + ¢,
we can redefine a weighting vector w = (w, wy) € RP*! such that

Y=V~VT<)1(>+6

Let (z1,v1),- .-, (s, yn) bei.i.d. observations. Each y; is a label (a decision) on the observation ;.
We consider the conditional distribution of all outputs given all inputs:

Pw,o2 <y | I) = pr,02 (yz | 377,)
=1

loften considered equivalent to the slightly different concept of discriminative model
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CHAPTER 2 - REGRESSION

The associated log-likelihood has the following expression:

n 12 — W'z
{(w,o?) = Zlogpwvgz(yi | z;) = —§log (2ma?) —5 Z i
i=1 =1

The minimization problem with respect to w can now be reformulated as:

1 n

min o z:(yZ — WTxZ»)2

W n;3

DEFINITION |. .1. [DESIGN MATRIX]
The design matrix X € M,, ,(R) is defined as:

The minimization problem over w can be rewritten in a more compact way as:

. 1 Xwli2
min -y — X

Introduce now the following function:
1 1
fiwr— o |y — Xw||3 = %(yTy —2w Xy + w X Xw)
f is strictly convex if and only if its Hessian matrix is nonsingular.

REMARKI..2. Thisis neverthe case whenn < p(and we say that we deal with underdetermined
problems). Most of the time, the Hessian matrix is nonsingular whenn > p. When this is not the
case, we often use the TycHONoOV regularization, which adds a penalization of the /5-norm of w
by minimizing f(w) + X ||w||5 with some hyperparameter A > 0.

The gradient of f is
1
Vf(w) = EXT(XUJ —Y)

which is equal to zero if and only if X" Xw = X "y. This equation is known as the normal equation.
If X" X is nonsingular, then the optimal weighting vector is

w=(X"X)"'X"y =Xy
where X" = (XTX) !XT is the MOORE-PENROSE pseudo-inverse of X.

REMARK |..3. If X" X is singular, the solution is not unique anymore, and for any h € ker(X),
W = (X"X)XTy + h is an admissible solution. In that case however it would be necessary to use
regularization.
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CHAPTER 2 - REGRESSION

REMARK . .4. The computational cost to evaluate the optimal weighting vector from X and y is
O(p*) (we use a CHOLESKY decomposition of X" X and solve two triangular systems).

Now, let us differentiate ¢ w.r.t. o%: we have

VU-ZE(W,O'Q) = 4+ 04 Z —w' 5131

202

Setting V,2/(w, 0%) to zero gives the MLE of o2

REMARK I. .5.  In practice, whenever we use a data matrix X in machine learning, we first pre-
process it to try and avoid that it would be too badly conditioned, so to avoid numerical issues.
Two main operations are applied columnwise: first, a centering (remove the mean of the coeffi-
cients) and a normalization (divide coefficients from a column by the standard deviation of the
column vector). Note that this preprocessing does not guarantee that the matrix we obtain is
well-conditioned: in particular, it can be low rank ...

Il. Logistic regression

DEFINITION Il. .1. [SIGMOID FUNCTION]
The sigmoid function is defined as:

o: R — [0,1]
z 1+i—z
Graph of o
1.0
0.8 -
0.6 1
0.4
0.2
0.0 1

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Figure 2.1: The sigmoid function
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CHAPTER 2 - REGRESSION

ProposiTION Il. .1. o satisfies the following properties:

VzeR, o(—2)=1—-0(z) and o' (z)=0(2)(1—0(2)) =0(z)o(—2)

Consider now anothermodelwhereY € {0,1}and X € RP. WeassumethatY followsaBERNOULLI
distribution with parameter § = o(w'z) where w € R” is a fixed weighting vector. The problem is
to estimate 6.

| REMARK II..1.  There again we can add an offset.

The conditional distribution is given by

po(Y =y| X =2)=00—-0)""Y =o(w'z)’c(—w' z)'"Y
Given an i.i.d. training set (z1, 1), . . ., (zn, Yn), We can compute the log-likelihood:

= Z y; log U(WT%’) + (1 —y;)log 0(—WTafi)
i=1

In order to minimize the log-likelihood, since z —— log(1 + e~*) is a convex function and w —
w " z; is linear, we calculate its gradient. With ; = o(w ' ;):

o(w'z;)o(—w'z;) ow'z)o(—w'z;)

Zyl Z; (WTQTZ) - (]‘ - yl)xl O'<—WT.CUZ sz 7‘ 7‘

Thus the gradient vanishes if and only if > ; ;(y; — 7;) = 0. This equation is nonlinear and we
need an iterative optimization method to solve it (see Annex IV. for more details). For this purpose,
we derive the Hessian matrix of ¢:

n n

Hi(w) => z;(0 — o'(wz)o' (—wla)z] ) = — > (1 —m)a z; = —X" diag(n(1 —n))X

i=1 i=1

We focus on the NEWTON’s algorithm and try to apply it for logistic regression.

The second-order TAYLOR-expansion of the loss function leads to

{w) = £0w) + (w — W) VL) + 5w~ w) T HEw) (w — ) + o [w - w])

With » = w—w" and the previous expressions of /, V¢ and H/, the minimization problem becomes:
1
mhin R'XT(y —n) — §hTXT diag(n(1 —n))Xh

This leads, according to the method, to set w'™! = w! + H{(w')~!'V/(w). The minimization prob-
lem above can be seen as some weighted linear regression over h of some function of the form

s W : 1 where§; = yi — n;and o2 = [n;(1 —n;)] L. Thus, this method is often refered as the
iterative rewe|ghted least squares algorithm.
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CHAPTER 2 - REGRESSION

Ill. Generative models [todo]
This part briefly presents the FISHER linear discriminant also known as the linear discriminant anal-
ysis. Suppose that we have X € R? and Y € {0, 1}. Then by the Baves formula:

pX ==|Y =1pY =1)
pX =z|Y =1)p(Y =1)+p(X =z|Y =0)p(Y =0)

pY =1|X=2)=

The assumption then consists in consideringp(X =z |Y = 0) ~ N (x, pg, Xo) and p(X =z |Y =
1) ~ N(z, g1, X1). FISHER’s assumption is the assumption that 3, = 3, = X.
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CHAPTER 3

Unsupervised classification

In this chapter we run into a classification problem with more than two classes. We assume that
Y € [1, K] forafixed K > 2.

@ Totalk about estimation of "hidden" parameters, French speaking people and English speak-

ing people use different terms which can lead to some confusions. Within a supervised
framework, English people would prefer to use the term "classification" whereas the French use
the term "discrimination". Within an unsupervised context, English people would rather use the
term "clustering", whereas French people would use "classification" or "classification non super-
visée". In the following we will only use the English terms.

Unsupervised learning consists in finding a label prediction function based on unlabeled training
data only. In the case where the learning problem is a classification problem, and under the as-
sumption that the classes form clusters in input space, the problem reduces to a clustering prob-
lem, which consists in finding groups of points that form denser clusters.

When the clusters are assumed to be isotropic the formulation of the K-means algorithm is appro-
priate.

I. K-means

K-means clusteringis a method of vector quantization. Itis an algorithm of alternate minimization
that aims at partitioning n observations into K clusters in which each observation belongs to the
cluster with the nearest mean, serving as a prototype to the cluster (see Figure 3.1).

I.A. The K-means algorithm

We will use the following notations:

e 11,...,7, € RPare the observations we want to partition into K clusters,

® L1,..., ik € RParethemeans: y isthe center of cluster k. We willdenote p = (p1, . . ., pik ).

e To each z; we associate the indicator variable z; = (Liecy, - - -, Lico, ) Where Cy, are the in-
dices of points belonging to cluster k. We set z = (z1,.. ., 2,).
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Figure 3.1: Clustering on a 2D point data set with 3 clusters [todo]

We also define the distortion as the function J defined by:

n K
T, 2) =35 2 [l — |

i=1 k=1

The aim of the algorithm is to minimize J. To do so we proceed with an alternating minimization:

Algorithm 1: K-means
Input :z(,...,2,, K, u
Output: ., 2

1 while no convergence do
2 | z=argmin, J(u,z)

3 | p=argmin, J(u,2)
a4 end

During the minimization w.rt. z, we seti € C thus 2z, = 1if k € argminy, ||z; — uw|5. In other
words we associate to each z; the cluster with nearest center .

During the minimization w.r.t. 1, one can show' that the new . is defined by

Zn:l ZikZq ZieC X
Vk e [1,K], === - k
. K] i1 Zik |C

that is to say each cluster’s center is the average of the points in the cluster.

REMARK . .1.  The step of minimization with respect to z is equivalent to allocating the z; in the
Voronoi cells which centers are the (p)1<k<x-

I.B. Convergence and initialization

We can show that this algorithm converges in a finite number of iterations. Therefore the conver-
gence could be local, thus it introduces the problem of initialization.

Random restarts A classic method consists in using random restarts. By choosing several ran-
dom vectors p, we can compute the algorithm for each case and finally keep the partition which

'by setting to zeros the gradient of J with respect of y,as V,,, J = =237 | zip(@; — pux)
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minimizes the distortion. Thus we hope that at least one of the local minimum is close enough to
a global minimum.

K-means++ One other well known method is the K-means++ algorithm, which aims at correct-
ing a major theoretic shortcomings of the K-means algorithm: the approximation found can be
arbitrarily bad with respect to the objective function compared to the optimal clustering. The K-
means++ algorithm addresses this obstacles by specifying a procedure to initialize the cluster cen-
ters before proceeding with the standard K-means optimization iterations. With the K-means++
initialization, the algorithm is guaranteed to find a solution that is O(log K') competitive to the
optimal K-means solution.

The intuition behind this approach is that it is a clever thing to well spread out the K initial cluster
centers. At each iteration of the algorithm we will build a new center. We will repeat the algorithm
until we have K centers. Here are the steps of the algorithm:

Algorithm 2: Initialization of K-means++
Input :xq,....2,, K
Output: ;1

1 Choose p1 uniformly among x4, ..., x,

2 fork € [2, K] do

3 | SetD; = ming o d(x;, pu) fori € [1,n]

4 | Choose uy, as z; with probability D?/ > | D?
5 end

We see that we have now built K vectors with respect to our first intuition which was to well-spread
out the centers (because we used a well chosen weighted probability). We can now use those vec-
tors as the initialization of our standard K-means algorithm.

I.C. Choiceof K

The parameter K is an hyperparameter that we need to specify to the algorihm.

It is important to point out that the choice of K is not universal. Indeed, we see that if we increase
K, thedistortion .J decreases, until it reaches 0 when K = n, that is to say when each data pointis
the center of its own center. To address this issue one solution could be to add to J a penalty term
over K. Usually it takes the following form:

n K
J(p, 2, K) = ZZ Zik || i — Mk”g +AK
=1 k=1
for an hyperparameter A\ > 0 which is again arbitrary.

I.D. Other problems

We can also point out that K-means will work pretty well when the width of the different clusters
are similar, for example if we deal with spheres. But clustering by K-means could also be disap-
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pointing in some cases such as the example given in Figure 3.2.

What we

K-means
would want

Figure 3.2: Example where K-means does not provide a satisfactory clustering result

Using Gaussian mixtures provides a way to avoid this problem (see next part).

Il. Expectation Maximization algorithm

The Expectation Maximization algorithm (EM) is an iterative method for finding maximum likeli-
hood estimates of parameters in statistical models, where the models depend on unobserved la-
tent or hidden variables Z. Latent variables are variables that are not directly observed but are
rather inferred from other variables that are observed.

Previous algorithms aimed at estimating the parameter # that maximized the likelihood of py(z),
where z is the vector of observed variables.

In this section we proceed differently, by assuming an observation = of a r.v. X (our data) depends
on a second random variable Z with observation z unknown (cluster center for example). Our
model is then the joint density ps (X, Z) depending on a parameter § € O, and the goal is to maxi-

mize pg(x) = X, po(, 2).

We can already infer that, because of the sum, the problem should be slightly more difficult than
before. Indeed, taking the log of our probability would not lead to a simple convex optimization
problem. In the following we will see that EM is a method to solve those kinds of problems.

II.A. Anexample

Let us present a simple example toillustrate what we just said. The probability density represented
on Figure 3.3 is akin to an average of two Gaussians. Thus, it is natural to use a mixture model and
to introduce a hidden variable z, following a BERNouLLI distribution defining which Gaussian the
point is sampled from.

In this example we have z € {1,2}and z |z = i ~ N(u;,X;). The density p(z) is a convex
combination of normal densities:

plx)=plx,z=1)+px,z2=2)=p(x|z=1p(z=1)+plx|z=2)p(z = 2)

This is a mixture model. It represents a simple way to model complicated phenomena.
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Figure 3.3: Average of two Gaussian distributions

Il. B. Our objective: maximum likelihood

Let D = {(x1,21), ..., (Tn, 2,)} are ni.i.d. observations of the random variable (X, Z). The aim is
to maximize theincomplete likelihood orlog-likelihood, wherez = (z1,...,z,)and z = (21, ..., 2,):
=Y poz,2) = [[ X polzi, ) lx) =log (Y po(w,2)) = 3 log (" po(wi, 1))
z =1 % z i=1 Zi

A direct way to solve this problem is for example to do a gradient ascent. EM algorithm will be
another way to do it.

Il.C. TheEM algorithm

We recall the JENSEN’s inequality:

PROPOSITION Il. .1. [JENSEN’S INEQUALITY]
Let f : R — R be a convex function and X is an integrable random variable. Then

JE[X]) < E[f(X)]

In addition, if f is strictly convex, then we have equality if and only if X is constant a.s..

Let us introduce a nonnegative function ¢(z) such that >, ¢(z) = 1. Using the concavity of log and
JENSEN’s inequality, one has:

= log (Zpg(:m z)) = log (Z <p9(x, z>)q(z))

=N a(2)
T,z
> > q(2)log (peé(z) )) =Y _a(2)logpy(z, 2) Zq )log q(z) := L(q,0)
with equality if and only if

Vz, q(z) = Po(2, 2) ) = py(z | x)

> po(w, 2!
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by strict concavity of log.

We have just proved:

ProposITION II..2. VO € © and q, we have:

log pg(x) = L(q,0)
with equality ifand only if q(2) = pe(z | x) for all z.

Thus we have introduced an auxiliary function £(g, 6) thatis always below the function log(py(x)).

As with K-means, EM algorithm consists in an alternating minimization:

Algorithm 3: EM
Input :x,...,2,,0
Output: 0, =

while no convergence do
q = argmax, L(q,0)) // E-step
0 = argmax, L(q,0) // M-step
end
z = argmax, py(z | x)

a A W N =

Algorithm properties

e EMis an ascent algorithm, indeed it goes up in term of likelihood (compare to before where
we were descending along the distortion).

e The sequence of log-likelihoods converges to a local maximum because we are dealing here
with a non-convex problem (see the illustration in Figure 3.4).
As it was already the case for K-means, we can reiterate the result in order to be more con-
fident, keeping the result with highest likelihood.

Initialization Because EM gives a local maximum, itis clever to choose an initial  relatively close
to the final solution. For Gaussian mixtures, it is quite usual to initiate EM by the output of K-
means, which gives a good initialization in practice, but with a large variance.

In practice: the EM recipe In practice we do at each iteration of the algorithm:

() Compute the probability of z | x, ps(z | ), which corresponds to the new ¢(z).

(i) Write the complete log-likelihood ¢.(z, z) = log(pe(z, 2)).

(iii) E-Step: calculate E; | x(¢.(z, 2)) the expected value of the complete log-likelihood function,
with respect to the conditional distribution of Z | X under the current estimate of the param-
eter .

(iv) M-Step: find # by maximizing £(q, ) with respect to 6.
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8 - log pg (x)

Figure 3.4: Convergence of the EM algorithm to a local maximum

II.D. Gaussian mixture

In this section we assume (X, Z) issuch that X € R?and Z € [[1, K] with Z ~ M(1,m,...,7k)
and X | Z =k ~ N (g, Zk)-

We set ) = (7, i1, X2) and we want to apply the EM algorithm to this model:
() Tocompute py(z | x), we use a BAYES formula:

po(w; | zi = k)pe(zi = k) _ e (24, fe, D)
pe(fm) >k 7Tk'90($z’, e Ek’)

Tik(0) ==po(zi = k|x;) =

where o(x, u, ) is the density function of N'(u, X2) at

1 1 Ty-1
(a1, D) = PN exp (= 5o =) @ — p))

Suppose we are at iteration ¢:

(ii) We write the complete log-likelihood of the problem:

gt(:t) (‘Ta 2) = 1ng0(t) (fL’ Z Zlogpe(t) Xi, Zz Zlog p@(t) Zi p@(t)<xz | ZZ))
i=1 i=1

—Zlogpau)(zz)ﬂogpeu) (i 2) = 3> [log(my”) + log(p (i, i, 547))] 1z
=1 i=1 k=1

(iii) E-step: we can now write the expectation of the previous quantity with respect to the con-
ditional distribution of Z | X. In fact it is equivalent to replace 1,,_; by pywy (2 = k| x;) =
TiR(00) = TZ(Q, as the other terms of the sum are constant from the point of view of the
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conditional probability of Z | X, and we finally obtain:

K
> [log )+ lOg(CP(sz?/M(:)y sy )))}Tz(tk)
1 k=1

f(0) =Bz x[t0(x,2)] =
(iv) M-step: we need to maximize f w.r.t. 6.
e First we maximize w.r.t. 7.
Maximizing f w.r.t. p corresponds to maximize 7, K | 1og(7r,§>)7i{§3 under the con-
straints Y5, 1, = land 7, > 0fork € [1, K].
We forget the inequality constraintin a first time and consider the following Lagrangian:

n K K
L(m, )= log(m) zk —l—)\( Zwk)
k=1

=1 k=1

Onehasforallk € [1, K]:

and we deduce that the maximizer 7(**1) is defined by (note that it is a non-negative
vector):

vk e [1,K], pi =

e Then we try to maximize w.r.t. to . This corresponds to maximize:

1. K
L(p 522%“ — ) X (i — )

=1 k=1

Fixing k € [1, K], one has using the results of Annex lI. :

n

Vi L, ) = ZTZ-(,?E?(% — k)

=1
noW),
which vanishes for i, = 217’“ Thus we have the following expression of z,(t+1):
i=1 Tz k
no (0,
Vke [[17K]]7 :ul(cH_l) = an ”Et)l
i=1Tik
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e Finally we can maximize w.r.t. ¥. We need to maximize if A, = X, "

L(p, A) =

n
1=

> ) [ lo(det(A0)) — 5 i — o) Aulr — gu)]

1 k=1

Fixing k € [1, K], one has using the results of Annex lI. :

" 1 1
VL, A) = Z 71(2 {2/\16 t— 5(951 — ) (w5 — Hk)q

=1
that will be equal to 0 if
P T (s — o) (2 — )T
Y, — i=1"ik — Kk - Mk
F n (0
i=1Tik
Thus we can define £(+1);
n ®) (t+1) (t+DN\T
(t+1)  2ai= szkz< =y ) (@i — )
VEe[l,K], X, = 7»117"(2

| REMARK II..1.  The M-step corresponds to the estimation of means in K-means.

Possible forms for > We can add some constraints on the form of each (X )1<x<k, depending of
our model assumptions. The most frequent ones are the following:

e isotropic: ¥, = 071, the cluster is a sphere and there is only one parameter,
e diagonal: X is a diagonal matrix: the clusteris an ellipse oriented along the axis, there are d
parameters.

e general: we make no assumptions on X;: the cluster is an ellipse, there are d(d+1)
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Bayesian method

[todo]

l. Introduction

Vocabulary:

a priori or prior: p (9)

likelihood: p (x| 9)

marginal likelihood: [ p (z |6) p (0) dO
a posteriori or posterior: p (0 | x)

Caricature Bayesian vs Frequentist:

1. the Bayesian is “optimistic”: he thinks that he can come up with good models and obtain a
method by “pulling the Bayesian crank” (basically a high dimensional integral),

2. the frequentist is more “pessimistic” and uses analysis tools.

The Bayesian formulation enables us to introduce the a priori information in the process of esti-
mation. For instance, let’s imagine that we play heads or tails. The Bayesian model is:

X {01}, X0~ Ber(0), ple;|0)=0"(1-6)""
the graphical model associated is represented on Figure 4.1.

OO

0 Ly

N

Figure 4.1: Graphical model of the biased coin game
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Now we can Compute the pOSterior:

then
P z1m) = 0" (1 —0)""" 1g11() = Beta(a, B)

wheren; = > ; x;isthe numberof1,5=n—n; +1landa =ny + 1.
Question: what is the probability of head on the next flip?

e Frequensist: 0, = n1/n by a maximum likelihood approach.

e Bayesian: p(x,41 | 21.n) = [ p(2ns1 | 0)p(0 ] 21.,)d0, where p(0 | x1.,)df is the posterior dis-
tribution. Then,

A (0% . nq + 1

0. — _
B a+pf n+2

é o ny n 1
By {n+2} +2 {n+2
is a convex combination of éML and éprwr. Then we can notice that for n = 0, the quantity
éB = % whereas éML is not defined. It underlines the importance of the prior distibution:
- with an “unknown” coin, we’ve got the information a priori : we’ll use the uniform law
for p (0).
- with a “normal” coin, we’ll use a distribution with an important concentration of mass
around 0,5 for p (0).
For a Bayesian, offering a “limited” estimator, as the maximum likelihood estimator, which
gives a unique value for 6, is not enough because the estimator itself do not translate the in-
herent uncertainty of the learning process. Thus, its estimator will be the density a posteriori,
obtained from the Bayes rule, which is written in continuous notations as:

_ p]9)p(0)
Jp(z]0)p(0)do

The Bayesian specifies the uncertainty with distributions that form its estimator, rather than
combining an estimator with confidence intervals.

If the Bayesian is forced to produce a limited estimator, he uses the expectation of the under-
lying quantity under the a posteriori distribution; for instance for 6:

hence,

:| - pnéML + (1 - pn) éprior

p(0]x)

tpost = E[0| D] =E[0|x1,22,...,2,) :/Gp(9|x1,x2,...,xn)d9

For more details about Bayesians see subsection V. and IV. A. in annex.
We then need to show that 6,,;, — 0*. Its variance is the variance of a Beta law

(a+5)2(()f+ﬁ+1) B @) (1_2)'0(3@) :éML(l_éML)OQ)

then the posterior covariance vanishes and

éB g éML (E> 9*

where 0* is the “true” parameter of the model.
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1. Bernstein von Mises Theorem

It says that if prior puts non-zero mass around the true model 6*, then posterior asymptotically
concentrate around #* as a Gaussian.

i. Revisitingexample Considerrepeating several times the experiment above: T" coins picked
randomly each flipped n times. (Figure 13.1)

o e

0, ®)

T

Figure 4.2: Graphical model of the biased coin game repeated 7" times

As a frequentist, empirical distribution on 1., will converge (as T — o0) to

p(a1,. .. o) :/9<£[1p(xi|9)> p(6)do

where p(#) is the distribution of coins of parameter 6 in the jar and [T, p (z; | §) is the mixture
distribution. Note that X1, ..., X,, are NOT independent.

On the other hand, forall 7w € S,

p(x1,...,2,) =D (:Bﬂ(l), . ,xﬂ(n))

lll. Exchangeable situations

a. Exchangeablility

Therandomvariables X, X»,..., X, areexchangeable if they have the same distribution as X (1), X7 (2),
..., Xr(n) for any permutation of indices 7 € S,,.

b. Infinite Exchangeablility

The definition naturally generalizes to infinite families (indexed by N). The random variables X3, X, . ..
are exchangeable if every finite subfamily X, , ..., X;, is exchangeable.
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c. de Finetti’s theorem

Xy, Xo, ... areinfinitely exchangeable, if and only if 3! p(6) (on some space O) such that

Vn eN, p(xy,z2,...,2,) = / (f[lp(xz | 9)) p(6)do

d. Why do we care about exchangeable situations?

The i.i.d. variables are a particular case of the situation of exchangeable variables, that we see
in practice. However when the i.i.d. data are combined with non scalar observations, the differ-
ent components are no longer independent. In some cases, those components are nonetheless
exchangeable. Forinstance in a text, words are shown as sequences that are not exchangeable be-
cause of the syntax. But if we forget the order of the words as in the “bag of word” model, then the
components are exchangeable. It’s the basic principle used in the LDA model.

e. Multinomial example
Let X |0 ~ Mult(0,1) wheref € Ay i.e.

k
p(X:l|9):91 and ZQ;zl,OSngl

=1
for that distribution we have,

~ n
ML '
0" =

hence if k > n there exists a [ such that 6% = 0.

In that case this frequentist model overfits. In the Bayesian model one puts a prioron A, = O, but
which one? A convenient property of prior families is “conjugacy”, introduced below:

i. Conjugacy Considera family of distribution
F={pllla) : ac A}.
One says that F'is a “conjugate family” for the observation model p(x | #) if the posterior

Ranran
POL )= )

belongs to the same family F’ than the prior, i.e.
da'e A st p@|z,a)=p@]|d)

For the multinomial distribution it gives us

n n

=1 =1

soif p(f) ﬁ 07, then p(xy., | 6) ﬁ o/
=1 =1

MVA 2019/2020 Probabilistic Graphical Models Page 30 of 122



CHAPTER 4 - BAYESIAN METHOD

f. Dirichlet Distribution

The Dirichlet distribution is the conjugate of the Multinomial law (see on Wikipédia for more de-
tails).

['(ap +ag+...+tak)
()T (ag)...T (ak)

p(01,6s,...,0) = e L T ()
Where 1 stands for the uniform measure on Ax = {s eERE| Y, 8 =1;Vi, 8 > 0} (K-dim sim-
plex).
o E[@”Ozl,...,a[(],

V(@) =0 |==—1,

( l) Zf:l o
If oy = 1 for all [ then one gets an uniform distribution,
if £ = 2 one gets the Beta distribution,
if there exists [ such that oy, < 1 one gets a U shape distribution,
if oy > 1foralll, one gets aN (unimodal bump).

For the multinomial model, if the we assume that the prioris
p(0) = Dir(0] )
then the posterior s
K
p(0 | z10) < [ gyter—t
=1
and the posterior mean is
n + o
E [0, | z1.0] = liKl
n+ > q;
j=1

for instance with oy, = 1 for all [ it adds 1, “smoothing” the maximum likelihood estimator.

nl+1

E[f) | o1] = 2o

i. NB One can consider that posterior can be used for prior of next observation. This is the
sequential approach.

IV. Bayesian linear regression

Let us assume that
y=w'r+e (4.)

where e ~ N (0, 0?%). Then the observation issue

ply|z) =N (y|w'z,0%)
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Then if we also choose a Gaussian prior on w.

plw) =N <w; 0, I;)

then the posterior is also a Gaussian with the following parameters

e covariance: 3, = A\, + X;X
e mean: i, = 3, (XTﬁ/UQ)
where
T n
X=1": and y =
Tn Yn

the covariance and the mean are the same as the ones for the ridge regression with A = \o2.

As a Bayesian: compute predictive distribution

p(ynew | Tnews L1:n, yl:n) - / p(ynew | Tnew, w)p(w | data)dw

w
_ ~T 2
o N (ynew | Hn Tnew, Upredicti'ue)
where
2 2 T <
Upredictive (Inew) =0+ xnewzn'xnewa

the real number o comes from the noise model and the second quantity of the right hand side
comes from the posterior covariance.
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CHAPTERS

Directed and undirected graphical models

You can find a review on probabilities, including independence and conditional independence in
Annex ., and a review on graphs in Annex V..

In this lecture, allrandom variables are assumed to be discrete, in order to keep notations as simple
as possible. All the theory presented generalizes immediately to continuous random variables that
have a density by replacing:

e the discrete probability distributions considered in this lecture by densities,
e summations by integration w.r.t. a reference measure (most of the time the LEBESGUE mea-
sure).

Graphical models combine probability and graph theory into an efficient data structure. We want
to be able to handle probabilistic models of hundreds of variables. For example, assume we are
trying to model the probability of diseases given the symptoms, as shown below:

X1 Xo X3

Diseases

Symptoms O O Q O

X

Figure 5.1: Graph representing binary variables which indicate the presence or not of a disease or
symptom

In this example we consider n nodes, each associated to a binary variable X; € {0, 1}, indicating
the presence or absence of a disease or a symptom. The number of joint probability terms would
grow exponentially. For 100 diseases and symptoms, we would need a table of size 2!%° to store all
the possible states. This is clearly intractable. Instead, we will use graphical models to represent
the relationships between nodes.
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I. Directed Graphical Model

Let G = (V, E) be a graph. A directed graphical model, also historically called a "Bayesian net-
work" when the variables are discrete, represents a family of distributions denoted L(G):

£(6) = {p|30rcizn s 0.060) = [T Ao}

where the (f;)1<i<n, called legal factors, satisfy f; > 0and >_,. fi(x;, x,,) = 1foralli € [1,n] and
T, and we recall that 7; stands for the set of parents of the vertex i in G.

I.A. First definitions and properties

Let X1, ..., X,, be n random variables with joint distribution p(X). Let G = (V, E) be a directed
acyclic graph, with V' = [n].

DEFINITION I. .1. [FACTORISATION IN (7]
We say that p(X) factorizes in G if p(X) € L(G).
We prove the following useful and fundamental property of directed graphical models:

PROPOSITION |..1. [LEAF MARGINALIZATION]
Suppose that p(X) factorizes in G. Then for any leaf® ¢, we have

plxnge) = 1 filzi zx,)
by,

Hence p(Xy\ () factorizes in G' the induced graphon V' \ {¢}.

9 leaf or terminal node of a directed acyclic graph is a node that has no descendant

PrRoOF Without loss of generality, we can assume that the leaf is indexed by n. Since it is a leaf, we
clearly have thatn ¢ ; foralli € [1,n — 1]. We have the following computation:

p(xr,. . Tns1) =D p(T1, . T) = Y 1:[ filzi, xr) folTn, ©x,)

Tn 1=1

n—1 n—1
— H fi(xi;xm) an(ITLJ'IWn) - H fz(xuxm)
=1 i=1

Tn

]

Note that the new graph G’ obtained by removing a leaf is still a directed acyclic graph. Indeed,
since we only removed edges and nodes, if there was a cycle in G/, the same cycle would be present
in G, which is not possible since GG it is directed acyclic graph.

REMARKI..1. Byinduction this result shows that in the definition of factorization we do not need
to assume that p is a probability distribution. Indeed, if any function p satisfies the factorisation
property then it is a probability distribution, because it is non-negative as a product of non-
negative factors and it sums to 1 by using formula proved by induction.
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LEMMA L. .2. Let A, B, C be three sets of nodes suchthat C C Band AN B = @. If p(xa | zp)
only depends on (x4, zc) thenp(xa|xp) = p(xa | zc).

PROOF Let p(z4 | xp) = f(xa,zc) for some function f. Then p(za,25) = p(za | z5)p(rp) =
f(xa,zc)p(xp). By summing over zz\ ¢, we have:

p(xa, zo) = Z p(ra,zB) = f(ra,2C) Z plrp) = f(ra,70)p(zC)

TB\C TB\C
which proves that p(z4 | z¢) = f(xa,2c) = p(za | zB). O

Now we try to characterize the factor functions. The following result will imply that if p factorizes
in G, then we have a uniqueness of the factors.

| ProposiTiON I..3. Ifp(X) € L(G) then fi(z;, x,) = p(x; | z.,) foralli € [1,n].

PROOF Assume, without loss of generality, that the nodes are sorted in a topological order'. Con-
sideranode: € V. Since the nodes are in topological order, we can apply the leaf marginalization

n — 1 times to obtain that
p($1, e 7xl') = Hf(xjwrﬂj)
j<i
Since we also have p(zy, ..., z;—1) = [1;<; f(z;, 2,), we have taking the ratio:

plxi| @y, .. wia) = i, ox,)

Since m; C [1,i — 1], this entails by the previous lemma that

p(zi|wy, .. xim1) = p(xi | 2x,) = f(245,77,)

Hence we can give an equivalent definition the factorization over a directed acyclic graph:
ProposiTION I. .4. p(X) factorizes in G if and only if

n

Vo, p(z) =[] p(@ilzs)

i=1

EXAMPLE L. .1.

e [TRIVIAL GRAPHS] Assume E = &, i.e. G has no edges. We then have p(z) = [, p(z;),
implying the random variables X1, ..., X,, are independent. Thus variables are mutually
independent if they factorize in the empty graph.

e [COMPLETE GRAPHS] Assume now we have acomplete graph?, we have: p(z) = [T, p(z;|z1, - . .

the so-called "chain rule" which is always true. Every probability distribution factorizes in a
complete graph. Note that there are n! complete graph possible, and that they are all equiv-
alent.

'forany j € [1,n], we haver; C [1,j — 1]
2thus with n(n — 1)/2 edges as we need acyclicity for it to be a directed acyclic graph
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e [GRAPHS WITH SEVERAL CONNECTED COMPONENTS] If G has several connected components
Ci,...,Ck, then one can show that p € £(G) implies p(x) = [T, p(zc,) (exercise). As a
consequence, each connected component can be treated separately.

In the rest of the lecture, we will therefore focus on connected graphs.

I.B. Graphs with three nodes
In this subsection we consider all connected graphs with 3 nodes, except for the complete graph,
which we have already discussed.

e MARKOV chain: the MARKOV chain on 3 nodes is illustrated on Figure 5.2. For this graph we
have
p(X,Y,Z)e L(G) = (X1Y)|Z

Indeed we have:

_py2) _ pleyz) o p@pz|apyle)
S I W e T E T T B R
thus
playle) =PI OISRy o) = sl (e )
X Y Z

O—0O—0

Figure 5.2: Graph of the MARKoOV chain on 3 nodes
e Latent cause: itis the type of directed acyclic graph given in Figure 5.3. We show that:
p(X,Y,Z) e L(G) = (X1Y)|Z
Indeed:
plr,y,2) _ p()ply|2)p(z]2)

pz) p(2)
e Explaining away: represented in Figure 5.4, we can show for this type of graph

=ple]2)py | 2)

p(z,y|z) =

p(X,Y,Z) e L(G) = XY
It basically stems from:

plz,y) = plx,y,z) = p(@)py) Y_p(z|z,y) = plx)p(y)
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Z

X Y

O O

Figure 5.3: Graph of the common latent cause

Z

O

Figure 5.4: Explaining away or v-structure

REMARK I. .2.  The word "cause" should here be between quotes and used very carefully, be-
cause the same way that correlation is not causation, conditional dependance is not causation
either! This is however the historical name for this model. The reason why cause is a bad name,
and that latent factor might be better, is that the factorisation properties that are encoded by
graphical models do not in general correspond to the existence of a causal mechanisms, but
only to conditional independence relations.

REMARKI..3. If pfactorizesinthe latent cause graph,thenp(x,y, z) = p(2)p(z| 2)p(y| 2), but us-
ing BAYES rule p(z)p(z | 2) = p(z)p(z| x) and sowe also have that p(z, y, z) = p(z)p(z | x)p(y | 2)
which shows that p is a MARKOV chain, i.e. factorizes in the MARKOV chain graph.

This is an example of basic edge reversal that we will discuss in the next section. Note that we
proceeded by equivalence, which shows that the MARkov chain graph, the reversed MARKoOV
chain graph and the "latent cause" graph are in fact equivalent in the sense that a distribu-
tion that factorizes according to one factorizes according to the others. This is what we will call
MARKOV equivalence.

REMARK . .4. Inthe "explaining away" graph, in general (X_LY') | Z is not true in the sense that
there exist elements in £(G) such that this statement is violated.

MVA 2019/2020 Probabilistic Graphical Models Page 37 of 122



CHAPTER 5 - DIRECTED AND UNDIRECTED GRAPHICAL MODELS

REMARK I. .5. For a fixed graph, p € L(G) implies that p satisfies some list of (positive) con-
ditional independence statements (CIS). The fact that p € £(G) cannot guarantee that a given
CIS does not hold. This should be obvious because the independent distribution belongs to all
graphical models and satisfies all CIS ...

It is also important to note that not all lists of CIS correspond to a graph, in the sense that there
are lists of CIS for which there exists no graph such that £(G) is formed exactly of the distribu-
tions which satisfy only the conditional independences that are listed or that are consequences
of the ones listed. In particular there is no graph G on 3 variables such that £(G) contains all
distributions on (X, Y, Z) that satisfy X Il Y, Y Il Z, X Il Z and does not contain distributions
for which any of these statements is violated®.

remember that pairwise independence does not imply mutual independence: see Remark . .3

I.C. Inclusion, reversal and marginalization properties

Inclusion property Here is a quite intuitive proposition about included graphs and their factor-
ization:

ProposiTIONI..5. IfG = (V,E)and G' = (V, E') then:

ECE = L(G)cCLG)

PROOF If p(X) € L(G),thenp(x) = [T\L; p(xi | ©x,(c)). Since E C E', itis obvious that m;(G) C
Fi(G/), and we can define fi(QZi, xﬁ,‘,(G/)) = p(]}l | xm(G)) Then p(I) = H?:l fl<ﬂf“ xﬂi(G/)) and fz
meets the factorization requirements, which proves that p € L(G’). ]

The converse of the previous proposition is not true. In particular, different graphs can define the
same set of distributions. We introduce first some new definitions:

DEFINITION I. .2. [MARKOV EQUIVALENCE]
We say that two graphs G and G’ are MARkov equivalent if £L(G) = L(G).

PROPOSITION |. .6. [BASIC EDGE REVERSAL]
If G = (V, E)is a directed acyclic graph and if for all (i, j) € E, i has no parents and the only
parent of j is i, then the graph obtained by reversing the edge (i, j) is MARKOV equivalent to G.

PROOF First note that by reversing such an edge no cycle can be created because the cycle would
necessarily contain (j,7) and j has no parent other than i. Using BAYES rule we have

p(xi)p(z; | ) = p(x;)p(e; | ;)

and we convert the factorization w.r.t. GG to factorization w.r.t. the graph obtained by edge reversal.
N

Informally, the previous result can be reformulated as: an edge reversal that does not remove or
creates any v-structure leads to a graph which is MARKOV equivalent.

When applied to the 3-nodes graphs considered earlier, this property proves that the MARKOV chain
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and the latent cause graph are equivalent. On the other hand, the fact that the explain away graph
has a v-structure is the reason why it is not equivalent to the others.

DEFINITION |. .3. [COVERED EDGE]
An edge (i, j) is said to be covered if m; = m; U {i}.

O—0r
Figure 5.5: Graph where edge (i, j) is covered

PROPOSITION |..7. [COVERED EDGE REVERSAL]

Let G = (V, E) be a directed acyclic graph and (i, j) € E a covered edge. Let G' = (V, E') with
E = (E\A{(i,7)}) U{(j,7)}, then G"is necessarily also a directed acyclic graph and L(G) =
L(G).

PROOF Exercise. ]

Marginalization We have proved in Proposition I. .1 that if p(xy, . .., z,) factorizes in G, the dis-
tribution obtained by marginalizing a leaf i factorizes in the graph G’ inducedon V' \ {i} by G. A
nice property of the obtained graph is that all the conditional independences between variables
X1,...,X,_1 that were implied by G are still implied by G’: marginalization has lost conditional
independences information about X, but not about the rest of the distribution.

It would be natural to try to generalize this and a legitimate question is: if we marginalise anodeiin
adistribution of £(G) is there a simple construction of a graph G’ such that the marginalized distri-
bution factorizesin G’ and such that all the CIS that hold in G and do not involve X; are still implied
by G'. Unfortunately this is not true. Another less ambitious natural question is then: is there an
unique smallest graph G’ such thatif p € £(G) then the distribution obtained by marginalizing i
isin £(G"). Unfortunately this is not the case either, as illustrated by the following exemple.

X1 X3 X5

v x ()

Figure 5.6: Marginalizing X3 would not result in family of distributions that cannot be exactly rep-
resented by a directed graphical model and one can check that there is no unique smallest graph
in which the obtained distribution factorizes
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Conditional independence with the non-descendents In a MARkOV chain, a well known prop-
erty is that X, isindependent of the past given X, ;. This result generalizes as follows in a directed
graphical model: if p(X) factorizes in G then every single random variable is independent from the
set of its non-descendants given its parents.

DEFINITION |. .4. The set of non-descendants of : denoted nd () is the set of nodes that are not
descendants of i.

LEMMA L. .8. Foragraph G = (V, E) and a node i, there exists a topological order such that all
I elements of nd(i) appear before i.

PROOF This is easily proved constructively: we construct the topological order in reverse order.
At each iteration we remove a node among leaves (of the remaining graph) which we add in the
reverse order, and specifically, if some leaves are descendants of i then we remove one of those. If
atany iteration thereis no leaf thatis a descendant of i, it means that all descendants of i have been
removed from the graph. Indeed, if there were some descendants of i left in the graph, since all
their descendants are descendants of i as well there would exist a leaf node which is a descendant
of 7. This procedure thus removes all strict descendants of i first, then i and then only all elements
of nd (7). O

With this lemma, we can show our main result:

ProposITION |..9. IfG is a DAG, then:

p(X) S E(G) — Vi, (XiJ_LXnd(i)) |X7rl.

PROOF

—> Based on the previous lemma we can find an order such that nd(i) = [1,7 — 1]. But we
have proven in Proposition I. .4 that p(z; | z,,) = p(x; | z1,...,2;_1), which given the order
chosen is also p(x; | 1,...,2i—1) = p(@i | T, Tnd(i)\r,)» this proves (X; Il Xnging,) | Xr,,
what we wanted to show.

<= Consider a topological order, Then 1,7 — 1] C nd(i): indeed by contradiction, suppose
j € [1,i—1]andj ¢ nd(i), then it exists a path fromi to j, which contradicts the topological
order property as there would be an edge from i to an element of [1,7 — 1].

By the chain rule, we always have p(zy) = [I°, p(x; | 1,...x;_1) but by the conditional
independence assumptions p(z; | z1, ... z;—1) = p(x; | z,), hence the result by substitution.

]

I.D. d-separation

Given a graph G and A, B, C three subsets of V, it would be useful to be able to answer the ques-
tion: is X4l Xp | X¢ trueforallp € L(G)? An answer is provided by the concept of d-separation,
or directed separation.

We call a chain a path in the symmetrized graph, i.e. in the graph obtained by ignoring the direc-
tionality of the edges.
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DEFINITION |. .5. [CHAIN]
Leta,b € V. Achain from a to b is a sequence of nodes, say (vy, ..., v,,) such that v; = a and
v, = bandforalli € [0, m — 1], we have (v;, v;41) € E or (vi41,v;) € E.

Assume C'is an observed set. We want to define a notion of being "blocked" by this set in order to
answer the underlying question above.

Vi—1 Vi+1

d

Figure 5.7: d-separation: case d € C and v-structure

Ui—1 Vi+1

d

Ino descendant in C]

Figure 5.8: d-separation: case d ¢ C and v-structure

DEFINITION |. .6. [BLOCKING NODE IN A CHAIN, BLOCKED CHAIN AND (-SEPARATION]

1. Achainfromato bis blocked at v; = d if:
e eitherd € C'and (v;_1, d, v;41) is not a v-structure,
e ord ¢ Cand (v;_1,d,v;;1) is a v-structure and no descendants of disin C.
2. Achainfromatobis blocked if and only if it is blocked at any node.
3. Aand B are said to be d-separated by C' if and only if all chains that go from any a € A to
any b € B are blocked.

EXAMPLEI. .2.

e [MARKOV cHAIN] Applying d-separation to the MARKOV chain retrieves the well know results
that the future is independent to the past given the present:
e [HIDDEN MARKOV MODEL] We can apply it as well to the hidden MARkov chain graph.

I. E. BAYEs ball algorithm

Checking whether 2 nodes are d-separated is not always easy. The BAYES ball algorithm is an in-
tuitive "reachability" algorithm to answer this question. Suppose we want to determine if X is
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Figure 5.9: Hidden MARkoOV Model

conditionally independent from Z, given Y. The principle of the algorithm is to place initially a
ball on each of the nodes in X, to then let them bounce around according to some rules described
below and to see if any reaches Z. (X Il Z) | Y is true if none reached Z, but not otherwise.

The rules are as follow for the three canonical graph structures. Note that the balls are allowed to
travel in either direction along the edges of the graph:

e MARKOV chain: balls pass through when we do not observe Y, but are blocked otherwise.

H8O OO0

Figure 5.10: MARKOV chain rule. Left: when Y is observed, balls are blocked. Right: when Y is not
observed, balls pass through

e Two children: balls pass through when we do not observe Y, but are blocked otherwise.

Y Y

N

Figure 5.11: Rule when X and Z are Y’s children. Left: when Y is observed, balls are blocked. Right:
when Y is not observed, balls pass through

e v-structure: balls pass through when we observe Y, but are blocked otherwise.
Il. Undirected graphical models

II.A. Definition

Let G = (V, ) be an undirected graph.
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X Z X VA

\*

~ 1

Figure 5.12: v-structure rule. Left: when Y is not observed, balls are blocked. Right: when Y is
observed, balls pass through

DEFINITION Il. .1. [FACTORIZATION IN AN UNDIRECTED GRAPH]
We denote by C the set of cliques of G. We say that a probability distribution p(X') factorizes in
G and write p € L(G) if exists (¢)¢)cec Nonnegative functions such that:

Vr, p(r)= ; [T ve(ze) where Z = 3 [] ve(zo)

ceC Tz CeC

gz} The functions (1¢)cec are not probability distributions like in the directed graphical mod-
els. They are called potentials.

REMARK II..1.  With the normalization by Z of this expression, we see that the functions (¢¢)cec
are defined up to a multiplicative constant.

| REMARK II..2. We can restrict C to Cy,.« the set of maximal cliques.

REMARK II..3.  This definition can be extended to any function: f is said to factorize in GG if and
only if f(x) = [Ioec Yo (zc) forall z.

Il. B. Trivial graphs

Empty graphs We consider G = (V, E)with E = @.Ifp € L(G),thenasC = {(} {i} |i € V):

n

thus X1, ..., X,, are mutually independent.

Complete graphs We considerG = (V, E)with E =V xV.Ifp € L(G),thenasC = {(} {i} |i €
V):
1
Ve, p(z)= Ziﬂv(ﬂfv)

This places no constraints on the distribution of X5, ..., X,,.
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Figure 5.13: The empty graph

4

Figure 5.14: The complete graph

2
1

Il.C. Separation and conditional dependence
ProposiTIONII..1. LetG = (V, E)and G' = (V, E') be two undirected graphs. Then:

ECE = L(G)C L)

PROOF The cliques of GG are included in cliques of G'. O

DEFINITION Il. .2. [GLOBAL MARKOV PROPERTY]
We say that p satisfies the global MARKOV property w.r.t. GG if and only if for all A, B, S disjoint
subsets of V' such that A and B are separated by S, then (X 41l X5) | Xs.

| ProposiTION II..2. Ifp € L(G) then p satisfies the global MARKOV property w.r.t. G.

PROOF We suppose without loss of generality that A, B, S are a partition of V, as we could other-
wisereplace Aand Bby A" = AU{a € V' | a and A are not separated by S} and B’ = V\{SU A},
which are also separated by S. Then if we can show that (X 4/l Xp/) | X, then by the decompo-
sition property, we also have that (X 4_Il Xg) | Xg, giving the required general case.

We consider C' € C. Itis not possible to havebothC N A # gand C N B # @ as Aand B are
separated by S and C'isaclique. ThusC' € AU SorC C BU S (orbothif C C S). Let D be the
set of cliques C such that C' C AU S and D’ the set of all other cliques. We have:

Vr, p(z)= ; H Ye(ze) H Ye(ze) = f(zavs)g(Tpus)

CeD ceD’
Thus: . A )
1 _ TA, TS
plxa,zg) = Zf(ﬂﬁA,ﬂ?s) ;9(5537555) = p(ra | Ts) —ZI/A F(2'y, vs)

and similarly
g(IB7 :ES)

P\ |Ts) = <~
ol Ts) = & ey s)
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Hence:
1
7/ (ra,25)9(xB, 5) p(ra, v, T5)
zal|lxg)p(ep|xg) = Z = et =p(xa, 25 |2
p( A| S)p( B| S) %EIA f(l';l,xS) ZI/B 9($f4,£ﬂs) p(xs) p( A B| S)
i.e. (XAJLXB) | Xs. ]

THEOREM Il. .3. [HAMMERSLEY-CLIFFORD]
If p(x) > 0forall x, then p € L(G) if and only if p satisfies the global MARKOV property.

Il. D. Marginalization

As for directed graphical models, we also have a marginalization notion in undirected graphs. Itis
slightly different. If p(X) factorizes in G, then p(Xy,. .., X,_1) factorizes in the graph where the
node n is removed and all neighbors are connected:

ProposITION II. .4. Let G = (V, E) be an undirected graph and G' = (V', E") be the graph
where n is removed and its neighbors are connected, i.e.. V! = V' \ {n} and E’ is obtained from
the set E by first connecting together all the neighbours of n and then removing n. If p(X) € L(G)
thenp(Xy, ..., X,—1) € L(G').

Hence undirected graphical models are closed under marginalization as the construction above is
true for any vertex.

We now introduce the notion of MARKOV blanket:

DEFINITION II. .3. [MARKOV BLANKET]
Fori € V, the MARKoV blanket of G is the smallest set of nodes that makes X; independent to
the rest of the graph.

REMARK II. .4. The MARKoV blanket in an undirected graph for i € V is the set of its neighbors.
For a directed graph, it is the union of all parents, all children and parents of children.

Il. E. Relation between directed and undirected graphical models

Since now we have seen that many notions developed for directed graph naturally extended to
undirected graphs. The raising question is thus to know whether we can find a theory including
both directed and undirected graphs, in particular, is there a way - for instance by symmetrizing
the directed graph as we have done repeatedly - to find a general equivalence between those two
notions. The answer is no, as we will discuss, though it might work in some special cases described
above.

Let G be directed acyclic graph. Can we find G’ an undirected graph such that £(G) = L£(G')?
L(G) C L(G')?

DEFINITION II. .4. [SYMMETRIZE~D GRAPHJ .
The symmetrized graph of G is G = (V, E), with E = {(u,v), (v,u) | (u,v) € E}, i.e. an edge
going the opposite direction is added for every edge in F.
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DEFINITION Il. .5.

[MORALIZED GRAPH]

The moralized graph G of G is the symmetrized graph where we add edges such that for all v €

V,m,isaclique.

We admit the following proposition:

| ProPosITION 1. .5. Assume G has no v-structure, then G = G and L(G) = L(G) = L(G).

In case there is a v-structure in the graph, we still have:

| ProposiTION II. .6. We have L(G) C L(G).

‘ REMARK II..5. G is minimal for the number of edges in the set H of undirected graphs such that

L(G) C L(H)

4

Notall conditionalindependence structure forrandom variables can be factorized in a graph-
ical model (directed or undirected).

Directed graphical model

Undirected graphical model

Factorization

P(SU) = H?:l p('xz | xm)

p(x) = 7 Heee Yelac)

Difference

Set independence d-separation separation
(2; 1 %na(s)) | £, (@and many more) (Xall Xp) | Xs
Marginalization not closed in general, closed
only when marginalizing leaf nodes
2 — 3 2 \
o
1T — 4 1

grid

v-structure

Figure 5.15: Review of the different notions in both the directed and undirected graphical models
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Information Theory

DEFINITION . .1. [ENTROPY]
Let X be arandom variable taking values in the finite set X', with distribution p. Forz € X,
the quantity I(z) = 1og is called self-information and the entropy of X is defined as the
expectation of I(X):

H(X)=E — > p(x)log p(x)

TeEX
with convention 0log 0 = 0.

REMARK. .1.

e [(x)can beinterpreted as a quantity of information carried by the occurrence of x. H(X)
is then the expected amount of information of the random variable X.

e The base of the logarithm is the natural base. We can also use base 2, which can be more
consistent with bit coding interpretations of entropy. In this course we will use the natural
logarithm, but note that all entropies are proportional.

DEFINITION..2. [KULLBACK-LEIBLER DIVERGENCE]

Let p, ¢ be two finite distributions on X'. The KULLBACK-LEIBLER divergence between p and ¢ is
defined by

p(z) p(X) p(X)
p”q g;(p 10g (x):Ep{l }:EQLKX)

% 4(X)

@ Note that the KULLBACK-LEIBLER divergence is not a distance as it is not symmetric.
| PrRopoOsITION . .1. We have D(p||q) > 0and equality holds if and only if p = q.

PROOF If there exists x € X’ such that ¢(z) = 0 and p(x) # 0then D(p|| ¢) = +o0. Otherwise, we
can without loss of generality assume that ¢ > 0 everywhere.

By convexity of the y — y log y, we have by JENSEN’s inequality:

p(X) . p(X)1 - p(X) p(X)
oot o8 o)) = Bal oy 1B Bl )

D(pllq) =E =0
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since B, {%} =Y ex pggq( r) =Y ex p(x) = 1.

Furthermore, by strict convexity D(p|| ¢) = 0if and only if p/q is constant almost surely. As p and
q are two probability distributions, it implies that p = q. ]

PrROPOSITION . .2. We have the following inequalities:

(i) H(X) > 0with equality if X is constant almost surely,
(i) H(X) < log(card(X)).

PROOF

(i) Sinceforallz € X, p(z) = P,(X = z) < 1then —p(x)logp(x) > 0, which implies that
H(X) > 0with equality ifand only if —p(z) log p(x) = O forallz € X, which proves the first
point.

(ii) We have for all distribution ¢

0< D(pllq) = [Zp )logq(x) — > p(x)log p(x } — > p(x)logq(x) — H(X)

zeX zeX zeX

Thus H(X) < —Y,cxp(z)logq(z) and taking for ¢ the uniform distribution over X', we
obtain

) <Y p(z)log(card(X)) = log(card(X))
O

DEFINITION . .3. [MUTUAL INFORMATION]
Let X, Y be two random variables of joint distribution px y and with marginal distributions px
and py?. The mutual information of X and Y is defined by

DPx Y(Iv y)
I(X.Y)=D = z,y) log =22
( ) (px.v || Pxpy) ;pr,Y( y) log px(2)py (¥)

‘werecall that px (z) = >_, px,v(2,y) and py (y) = -, px,v (2, y)

From Proposition . .1it directly follows that:

| ProposiTION. .3. [(X,Y) =0ifandonlyif X1Y.

gz} In general we know that independence implies non correlation but the converse is not true!

The first implication comes from the fact that if X_Il Y then E[XY] = E[X]E[Y]. For the
reverse implication, we have the following counter-example: if © ~ U([0, 1]) and X = sin(270),
Y = cos(270) then X and Y are not correlated but dependent.

Note that in the case of Gaussian vectors the converse is also satisfied.

Relation between minimum KuLLBACK-LEIBLER divergence and maximum likelihood principle
Letxy,...,z, € X beni.i.d. observations of X.
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DEFINITION . .4. [EMPIRICAL DISTRIBUTION]
The empirical distribution of X derived from the sample x4, ..., z, is the distribution p defined
by:
1 n
Vo € X p - Z 5£E,CE7;
n =1
where 6,5 = 1,—.

Let Po = {ps | 0 € ©} be a statistical model.

PROPOSITION . .4. Maximizing the likelihood py(x) is equivalent to minimizing the KULLBACK-
LEIBLER divergence D(p || ps).

PROOF One has:

ﬁ(x)
D(pllpe) = > D= - p(x)log po(x)
Z % ) - Z
= —H —fzzém log pg(z) = —H(p —leogpa ;)
J:EXZ 1 i=1
The second term is equal to the opposite of the log-likelihood. Hence the conclusion. ]

REMARK . .2. If py(x) = 0then p(x) = 0 but the converse is not true. So we should not try to
compute D(py || p) because this would rule out all the values of = that we have not encountered
yet (i.e. such that p(z) = 0).

Maximum entropy principle The maximum entropy principle is a different principle than the
maximum likelihood principle and solves a different kind of problem. It assumes that we use the
data to specify a constraint on the possible distribution we choose.

The idea is to maximize the entropy H(p) under the constraint that p € P(X’) a set of possible
distribution typically specified from the data.

Let us consider the following examples:

EXAMPLE. .1.

e A study on kangaroos estimated that p = 3/4 of the kangaroos are left-handed and ¢ =
2/3 drink Foster beer. What is a reasonable estimate of the fraction of kangaroos that are
both left-handed and drink Foster beer? The maximum entropy principle can be invoked to
choose among all distributions of pairs of binary random variables. In particular, one way
to formalize that we want to choose the least specific distribution that satisfies these con-
straints is to find the distribution with maximal entropy that satisfies the constraints on the
marginals.

If X is the indicator variable of being left-handed and Y the indicator variable of drinking
Foster beer, then the problem is formalized as:

max,,, H(pxy)
s.t. pxy(1,0) +pxy(1,1) =p
pxy(0,1) +pxy(1,1) =g¢
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What is the solution to this problem? (exercise)

e Among all distributions on [[1, 10] what is the distribution with expected value equal to 2
which has the largest entropy? (exercise)

e Itis possible to show that the distribution on R with fixed mean p and fixed variance o that
has maximal differential entropy is the Gaussian distribution.

e The principle of maximum entropy is also the principle invoked to construct distribution on
angles with fixed mean and variance. It leads to the so-called wrapped normal distribution. A
related distribution on angle which is also a maximum entropy distribution is the voN MISES
distribution.

The maximum entropy principle is used often when working with contingency tables.

Entropy and KuLLBACK-LEIBLER divergence for continuous random variables Let X be a con-
tinuous random variable taking its values in the continuous space X and let p be its probability
density function. We have the following adapted expressions of entropy and KULLBACK-LEIBLER
divergence:

DEFINITION . .5. [ENTROPY AND KULLBACK-LEIBLER DIVERGENCE, CONTINUOUS CASE] Let p, ¢
be two probability density functions.

e The differential entropy of p is defined as:

Has(p) = = [ p(x) log(p())du(x)

e The differential KULLBACK-LEIBLER divergence is defined as:

p(z) p(X)
Dy = / 1 d =Ex.,|l
ar(pllg) = | plx)log ) () = Exp| log q(X)}
@ In the continuous case, the entropy can be negative!

REMARK . .3. Note that the definition of Hg(p) depends on the reference measure . This
means that Hgi(p) does not capture any intrinsic properties of p any more, and loses its "physi-
calinterpretation” in terms of quantity of information, at least in an absolute sense. By contrast
Dyir(p|| ¢) does not depend on the choice of the reference measure and has therefore a stronger
interpretation.

MVA 2019/2020 Probabilistic Graphical Models Page 50 of 122



CHAPTER7

Exponential families

I. Generalities

Letzq,...,x, € X beni.i.d. observations of arandom variable X.

DEFINITION I. .1. [STATISTIC]
A statistic @ is just a function of thedata z, ..., 2, — (x4, ..., zN).

DEFINITION I. .2. [SUFFICIENT STATISTIC?]
T is a sufficient statistic for a statistical model Pg if for all § € © there exists some function h
and g such that:

Ve, po(z) = h(x)g(T(z),0)

Istatistique exhaustive in french

A sufficient statistic 7'(x) carries all the information that is relevant to estimate 6 from data z using
the maximum likelihood principle.

Another way of interpreting what a sufficient statistic is is to take the Bayesian point of view. In
Bayesian statistics, the parameter 6 is modelled as a random variable and we then have:

p(z,8) = p(x | 0)p(0) = h(z)g(T(x),0)p(6)
which means that 6 1L X' | T'(X).

Let © be an open subset of R? and Pg a family of distributions taking values in a same space X.
Let 1 be a fixed measure on X'.

DEFINITION |. .3. [EXPONENTIAL FAMILY]
Po is an exponential family if each distribution py € Pg admits a density w.r.t. i of the form

Ve € X, pg(z)=h(z)exp (b(H)TqS(J:) — fl(@))d,u(x)

where h is the ancillary statistic, hyu the reference or base measure, ¢ the sufficient statistic,
also called feature vector, = b(6) the canonical parameter and A(0) = A(n) the log-partition
function.
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PROPOSITION I..1. [EXPRESSION OF THE log-PARTITION FUNCTION]

One has:
= log [ h(x)exp (n"6(x))du()

PROOF It suffices to write that:

L= [ pa@)dp(e) = e [ h(z)exp (n76(2))dux)

DEFINITION |. .4. [CANONICAL EXPONENTIAL FAMILY]
A canonical exponential family is an exponential family which such thatn = b(0) = 0, i.e.:

Yre X, py(x)=hx)exp (n7 o) — An))

DEFINITION I. .5. [DOMAIN]
The domain of an exponential family is defined as 2 = {n € R? | A(n) < +oo}.

EXAMPLE |..1. [MULTINOMIAL MODEL]

Let X bearandomvariableon X = {(O, ...,0,1,0,...,0) € {0, 1}K} following a multinomial dis-
tribution of parameter . Then we have the following density function w.r.t. the counting measure
v

K K
Vee X, po(z H T = exp (Z xy log 7rk> = exp <Z xkﬁk> = exp(7) ' z)
k=1 k=1
where 7} = (log 7y, ..., log 7rK) . We are close to identify an exponential family with h = 1, ¢ = id

and n = 7, but we cannot identify A(n). Using Proposition I. .1, we have:

A(n) = log ( > eXP(UTI)> = log (f: eXp(nk)>

zeX k=1

and if the family is an exponential family with h = 1 and ¢ = id we can write:

pr(z) = exp ( Z_: TNk — A(n)) = exp (Z(Uk - A(n))xk) = €Xp (Z log (Kexi)xa

k=1 k=1 Zk’:l €XP Tk
With the above expression we identify 7 is defined as satisfying 7, = ZKQ% for all k.
W1 XD My

In fact the first expression was showing that we had an exponential family, with = 77 we have
A(n) = 0.

The difference with this new expression is that we now take into account the fact that S5 | m;, = 1.
This was a hidden constraint on 77. Adding the A(n) gives a new expression with no more constraint
over the values that 1 can take.

EXAMPLE |. .2. [GAUSSIAN DISTRIBUTION OVER R]
We have:

(z —p)?

V2?2 P ( 202
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and we recognize an exponential family on the domain: {n € R? 1, < 0} where:

b =) n=(L55) A =gle(- o) - L

EXAMPLE . .3. Many other common distributions are exponential families. For instance binomial,
PoissoN (X = N), DIRICHLET, Gamma and exponential laws.

DEFINITION |. .6. [CURVED EXPONENTIAL FAMILY]

An exponential family is said to be curved if its Jacobian (ggj (0))

~isnotfull rank foralld € ©.
J

3

EXAMPLE I. .4. One can check that Po = {N (i, u?) | > 0} is a curved exponential family.

Il. Link with the graphical models

EXAMPLE Il. .1. [ISING MODEL]

OO0+

OO0
O—0O—0s

Figure 7.1: ISING model

The ISING model is a model of variables n variables taking values in {0, 1} and linked by the graph
G = ([n], E) of Figure 22. A probability distribution of this model is under the following form:

n 1
Ve e {0,1}", py(z) = 700 exp ((Z @/}fj(xi,xj))
Lj)er
where n = (V)i jyep kweqo,1y and each ¢;; has the following expression’:

1,

Vij(wi, ) = Vijwiwy + Viloi(1 = a) + V(1 — a2y + Vi (1= 2) (1 — )

'we omit the 7 to avoid heavy notations
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It is easy to see that this is an exponential family for which we have
o(x) = (ziwj, ms(1 — 25), (L — zi)ay, (L= 25) (1 — 25)) (i jyer

In fact the above expression is overparametrized and we can rewrite the model with just one pa-
rameter per node and one per edge under the form:

Ve e {0,1}", ps(x

7T H em]xzx]

ZEV (3,5)EE

EXAMPLE Il. .2. [GENERAL DISCRETE GRAPHICAL MODEL]
In the general case of a discrete graphical model such that p > 0 on X, we have:

H \IJ ; exp (Z log \ch(xc)) = ; €xXp (Z Z 5yc,xc 10g \ch(yc))

ceC ceC ceC ycEXe

where X, is the set of all possible values of the random variable on the clique c¢. We identify an
exponential family with

(b(',“v) = (5IC7yc)C€C,yc€Xc and 77 = (].Og \IIC(Z/C))CGCJ/CGXC

lll. Minimal representation

Let Po be an exponential family.

REMARK lIl. .1.  The set NV, = {z € X | p,(z) = 0} actually does not depend on 7 but only on
h(z)!

In the following we denote by A" = {z | h(x) = 0} the common set of probability zero.

DEFINITION IIl. .1. [AFFINELY DEPENDENT STATISTICS]
We denote ¢(z) = (¢1(x),...,ox(x))T. The sufficient statistics are said to be affinely depen-
dent if:
K
3(00,...,01() #OKJA, Vx¢N,co+ch¢k(x) =

k=1

DEFINITION IIl. .2. [MINIMAL REPRESENTATION OF AN EXPONENTIAL FAMILY]
Avector of sufficient statistics provides a minimal representation of the exponential family these
statistics are affinely independent.

THEOREM IIl. .1.  Every exponential family admits at least one minimal representation (not nec-
essarily unique) of unique minimal dimension K.

| REMARK 1. .2. In practice we will quite often use redundant (i.e. not minimal) representations.
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IV. Exponential family of ani.i.d. sample

We consider ani.i.d. sample X, ..., X,, of distribution p, which belongs to an exponential family.
Then:

palans ) =TT po(a) = TT ey exp (7o) =Aln) = T hwi) exp (7 (3 6(wi)) ~nA(m))
i=1 i=1 =1 =1
Thus the distribution of our sample belongs to an exponential family with

e sufficient statistics n¢ where ¢(z) = £ S0, é(z;),

e canonical parameter and domain unchanged,
e log-partition function nA(n).

V. Convexity and differentiability in exponential families

We recall the HOLDER’s inequality:

LEMMAV..1. [HOLDER’S INEQUALITY]
Letp € [1,+o00] and . a measure onR% Then forall f, g : R — R, one has:

[ @@ dute) < ([ 1@ ) ( [ lgt)"dr)?
where q is such that § + 1 = 1.

THEOREM V. .2. [CONVEXITY PROPERTIES IN AN EXPONENTIAL FAMILIY]
In a canonical exponential family, we have the following properties:

(i) The domain Q is a convex subset of R?,
(i) Z :nmv+—— [ h(z)exp(n' ¢(z))dx is a convex function,
(i) Z is log-convex function, i.e. A = log(Z) is convex.

PROOF

e Letus prove (i) and (ii) together. If @ = &, the result is trivial.
If not, letn = any + (1 — a)ny where ny,mo € Qand a € [0, 1]. By convexity we have:

exp(n” 9(x)) < aexp(n] 9(x)) + (1 = a) exp(n] 6(a))
Thus:
[ h@)exp(y” éw)du(x) < o [ he) expln] 6(@))dp(e)+(1-a) [ he)exp(r 6(x)dn()

which is exactly Z(n) < aZ(m) + (1 — «)Z(n2). Thus Z is convex and as 1,72 € €, we
obtain Z(n) < 400, and thus n € 2. So Q2 is convex.
e To prove (iii), let n = an; + (1 — a)n, where ny, 2 € Qand a € [0, 1]. We can write:

Z(n) = [ h(@) exp(n” o(@))dp(x) = [ [a(z) exp(n] o(x))]” [a(z) exp(n] ()] dp(x)
f(@) 9(z)
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Applying HOLDER’s inequality withp = 1/a > 1, we obtain:

/ f(@)Pdu(z / g(x)'dp(z
= ([ hlw) exoln] o(@))] dpu())" (h(az) exp(ng ¢(@))|*du(a)) " = Z(n)* Z(a)
and Z is log-convex.
L]

Thus in a canonical exponential family, the maximum likelihood estimator is the solution of a con-
vex optimization problem! Indeed the log-likelihood is concave:

((n) = log py(x) = log h(x) +nn ' ¢(x) — nA(n)

@ The theorem does not hold in any of those two cases: if the family is curve or if ¢ is not fully
observed and we consider the marginal likelihood of the observations.

THEOREM V. .3. Ifn € Sol, then Z and A are C* and:

oz m mi
W(n) =E,[¢1(x)™ ... o (x)"*]Z(n)

VYmy,...,mg € N,

PROOF It is a bit technical but standard to show using the dominated convergence theorem that
one can exchange differentiation and expectation in the computations of the differentials of Z.
One then has for a fixed k € [1, K]:

gf(m = [ du(@)h(x) exp(n” $(z))du(x)

= [ ou(a)h(a) expln” é(x) — Alm)dp(x) exp(AG)
= E,[ou(x >1 ()

and we obtain the general formula by induction. O

VI. Moment methods

VI.A. Momentvector

DEFINITION VI..1. [MOMENT VECTOR]
We define the moment vector (or moment parameter) as

w(n) = VA(n) = E,[¢(X)]

PROOF We have:

e h(@)é(@) exp (176 /

VA
) Jx h() exp ( To(x

o) exp (07 6(x) ~ A(n) ) dpa() = E, [9(X)
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EXAMPLE VI. .1.
e For a BERNouLLI distribution, we can write:
p(x) = 7%(1 — 7)1 = exp(zlogm — zlog(1 — 7) 4 log(1 — 7) = *1~AM

where n = log(:*=) and A(n) = —log(1 — 7).
From this we get that 7(1 — 7) ¢” and thus 7 = o(n) where ¢ is the sigmoid function®. More-
over, we can write A(n) = —log(1 — 7) = log(1 + €") and the moment vector is:

p(n) = Eylo(X)] = Ey[X] = m

e Inthe multinomial case we consider Z ~ M(1,7) with Z € {0,1}". We have ¢(Z) = Z and
the moment vector is:

p(n) =
e In the Gaussian model we have ¢(X) = (X, X?)T and we obtain:

p(n) = (u, 0+ p*)"

VI.B. Hessianof A
ProposiTION VI. .1. The hessian of A is the covariance matrix of the sufficient statistic:

V2A(®) = E[(6(X) — u(n))(¢(X) — u(n) '] = Cov($(X))

PROOF We can write:

VZ(??)) _ V?Z(n)
Z(n)

= p(n) and that:

VEA(n) = VVA() = V(

VZ(U))T _V?Z(n) VZ(n) (_VZ(U))T

+VZ(77)(— Z0n)? Z(n) Z(n) Z(n)

VZ(n)
Z(n)

(V2Z0))iw = Elon(X)ow(X)1Z(n)  V2Z(n) = E[p(X)(X) '] Z(n)
And consequently:
V2A(n) = E[p(X)¢(X) '] = u(mu(n)" = E[(6(X) — u(m)(¢(X) — u(n) '] = Cov(e(X))

]

Moreover remark that

CoroLLARY VI. .1. We have the following properties:
(i) V2A(n) is semi-definite positive,
(ii) Ais convex,

(iii) A is strictly convex on 62 if and only if $(X') is a minimal representation of the exponential
family.

2remark that in logistic regression we haven = w ' z
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PROOF

(i) One has:

Ve e RX, ¢TV2A(n)e = Ele" (6(X) — u(n)(&(X) — () e = E[ e (6(x)[ ] = 0

(ii) It directly follows from (i).
(ili) If Aisnot strictly convex, then there existsy and ¢ € RE such thatc¢" V2A(n)c = 0 therefore,
forallz € X, Var(c'¢(x)) = 0thus ¢ ¢(x) = —cp a.s.. We can thus write

Vee X, co+capi(z)+--+cxdr(x) =0

Since we can go backward, we have the equivalence.

VI.C. log-likelihood of an exponential function

With the context and notations of section IV. , we have

—l(n) = —nn'¢+nA(n)  and — Vi(n) = —ne + nu(n)

Consequently we have the following equivalence:

Vim) =0 < umn)=29¢

THEOREM VI..2. [MOMENT MATCHING]
The maximum likelihood estimator n is such that ¢(x) = u(n).

REMARK VI. .1.
inference _
no = un)=9¢

learning

VI.D. Link between maximum likelihood and maximum entropy

The maximum entropy principle can be applied: we want to find the distribution psuchthatE, [¢(X)] =
¢ and has maximal entropy. We can write this as a convex optimization problem:

min, —H(p)
subjectto E,[¢(X)]=¢, p>0, YX,px)=1

Let us introduce the Lagrangian of this problem, forgetting in a first time the non-negativity of p:

L(p, A v) =Y pa)logp(x) = A D p(x)é(x) — ¢) + v( Y px) — 1)
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Since the problem is convex, we have strong duality®.

Without loss of generality, we can hence assume that p > 0 and that the moment condition holds.
The gradient of the Lagrangian w.r.t. p is given by:

Vpﬁ(pa/\vy) = lng+1 _>‘¢+C
and we have:
VoL(p, A\ v) =0 <= Va, logp(z)=Ap(x)—(c+1) <= Va, pz)=c D et o)

We recognize here an exponential family. Reinjecting this value of p and maximizing w.r.t. A and ¢,
we obtain the maximum likelihood estimator.

We have shown:

THEOREMVI. .3. IfXy,..., X, isaniid. sample and ¢(X) the sufficient statistic, then the max-
imum entropy estimator satisfying E,[¢(X)] = ¢ is the maximum likelihood distribution in the
exponential family with sufficient statistic ¢.

VI.E. Gaussian graphical models

We consider X ~ N (i, X)) € RP.

Canonical parameterization Denotingn = X 'pzand A = 71, we get:
Ve € R, (z—p) Ao —p)=2"Ax—2n"2+n"Sn
from which we deduce:
Ve e R?, p,a(x) =exp (T]TSL’ — ;xTAx — A(n, A))
where

1

Al A) =5

a" A+ £ log(om) ;log(det(A))

0 = (A, n) arethe canonical parameters. A is called the precision matrix, and n is the loading vector.
We have the following sufficient statistic, which is not a minimal representation:

o(x) = (x, —;xa?T>T

The moment of the model is:

VoA(n, A) = Bal6(X)] = (Eo[X], ~ JE[XXT))

3SLATER’s condition corresponds to the existence of p in the relative interior of the domain of the function that s in
Rlﬁ and suchthat >~ p(x) = 1. If we do not find such a p then we can reduce our set taken X’ = X'\ {z | p(z) = 0}
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where:
Eo[X] = V,A(n,A) = A""np=p

and
1 1
—;E[XXT] = VaA(n, A) = —;Almﬁ\—l — A = =gl + AT

Computing the covariance of X we get:

Covg(X) = Eg[XXT] — B[ X|Eg[X]T = A =%
I REMARKVI..2. We could have also computed the covariancewith A™" = V2 A(n, A) = Covyg(XXT).

Conditioning and marginalization We partition the random variable X € RP? into two compo-

nents X; € R” and X, € RP? such that X = <§1> and p = p1 + p2. We now seek to determine
2

the law of X; and X5 | X,

Before doing so, we need to partition the moment parameters i, 32 and the canonical parameters

A, ninthe same way:
m -1 A Ap
= and A=Y=
7 (772) <A21 A22>

1 Y1 Yo
= 2 =
: (#2) <221 Zm)

from which we get a partitioned form for the joint distribution:

.
1 Loy —m <$1 — M1>
VY , L9, L1, X2) = ex ( 9 A )
b2 Pun(n ) (27)P det () P72 (f”? —H2 T2 — 2

In Annex VII. , we introduce a tool to block diagonalize partitioned matrices. This allows us to de-
velop general formulas for marginalization and conditioning in the multivariate Gaussian setting.

Using the WOODBURY-SHERMAN-MORRISON formula, we compute an interesting expression for the
quadratic form of the multivariate Gaussian distribution:

(v =) A —p) = (x - M)T x ( - Ml)

T — M2 L2 — M2
(T (1 -Y' e (20 0 I 0\ (21— 1
() 07O ) o 1) (20)
= (21— ) "8 (21 — ) + (22 — g = b) [y, ] (@2 — o — D)
where we denote b = Yo X1 (21 — j11).
Now recall that det(X) = det(¥1;) det([¥/x,,]), the joint distribution can be expressed as:

1 e*%("ﬂl*m)TEﬁl(M*m) 1

(2m)Pr det(Xy) V@m det((£)5,,))

p(z1) p(z2 | 1)

o3 @2—p2=b)T[X)5), |7 (z2—p2—b)

pu,E(IlaxQ) = \/
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from which we deduce that:

X1~ N (1, 211) and Xo | X1~ N (p2 + San 55 (X1 — ), [S)m,])

Denoting X; ~ N (p1, 1) and Xo | Xi ~ N (ua 1, X211)% we can then parametrize the canonical
parameters:
M= [Ajaplin =m0 — AoAg e A =351 = [Ajay,] = A — AaAst Ay
A22| 1= Ay M1 = Aoy [1M2])1 = Noopiy — Aoy (1 — p11) = 12 — Aoy

We can notice that in the moment parameterization, the marginalization operation is simple and
the conditioning is complicated and the opposite holds in the canonical parameterization.

Zeros of the precision matrix and MARKoV properties Let p(X;,..., X)) ajoint Gaussian dis-
tribution. We denote I = {3, j} for fixed i < j and we consider p(x; | z;c). Using the canonical
parameterization:

R/ Airexe _ _ e Aij
= (773' - Ajfcﬂflc) and Arryre=Aar = (Aji Ajj
and we have the following expression for the covariance of X; | X.:

7 1 A=A
Cov(Xy | Xre) = Zppjre = Apj e = det(Arr) <_/j\]ij Au‘j )

Hence Cov(X;, X | X/e) 4 —AAiJ and A;; = 0 implies that (X; LX) | X/e.

]

I ProposITION VI. .4. The non zero coefficients in A correspond to edges in the underlying graph-
ical model.

Indeed the distribution is proportionalto exp(n ' z—32 " Az) = [T1<;<p exp(mix;) [li<i j<p exXP(— 32:Mi;;).

“nota that $5 |1 = T2 — £2151,' S0
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Sum-product algorithm

I. Motivations

Inference, along with estimation and decoding, are the three key operations one must be able to
perform efficiently in graphical models.

Given a discrete GIBBS model of the form:

*chl’c

C’EC

where C is the set of cliques of the graph, inference enables computation of:

e the marginal p(z;) for a fixed i or more generally p(z¢),
e the partition function Z,
e the conditional marginal p(x; | z;, zy).

and as a consequence computation of:

e the gradient in a exponential family,
e the expectedvalue of thelog-likelihood of an exponential family at step E of the EM algorithm
(for example for a hidden MARKOV model).

A first example: the IsING model We consider the ISING model and denote by G = (V, E) the
associated graph, with |V'| = n. Let X = (X;);cv be a vector of random variables, taking value in
{0,1}", of which the exponential form of the distribution is:

Vo e {0,1}", plx)=e —Am) H eli%i H i Ti%i

eV (3,5)€E

The log-likelihood is then:

mel—i_ Z nijziv; — An)

eV (i,4)€E

We can therefore take as sufficient statistic:

o(x) = ((xi)iev, (7))@ jer)
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But we have seen that for exponential families:
() =o(x)'n—A(m)  and  V,l(n) = ¢(x) — Ey[p(X)]
We therefore need to compute E, [¢(X)]. In our case, we get:
VieV, E,[Xi|=p,(X;=1) and V(i,j) e E, E,[X:X;]=p,(X;=1,X,=1)

This is one of the motivations for solving the problem of inference: in order to be able to compute
the gradient of the log-likelihood, we need to know the marginal laws.

Another example: the PoTTs model Let (X;);c1 be random variables such that X; takes values
in [1, K;]. Denoting A;x, = 1x,— and §;x = 1,,—x, the POTTs model is such that

K; K, Kj
pn((S) = €xp <Z Z Thkfszk + Z Z Z nijkk’(gikajk’ — A(n))

i€V k=1 (i,§)€E k=1 k'=1

This is an exponential family with sufficient statistic ¢(6) = ((Gir )ik, (k08 )i jrir) - Then we
have:
En[Azk] = pn[Xz = k?] and En[AikAjk’] = pn[Xz = ]{7, Xj = k/]

Those two examples illustrate the need to perform inference.
@ But a main problem is that in general the inference problem is NP-hard!

How to deal with this problem depends on the kind of graphs:

e for trees, the inference problem is efficient as it is linear in n,

e for "tree-like" graphs, we use the Junction Tree Algorithm which enables us to bring the situ-
ation back to that of a tree,

e forthe general case, we are forced to carry out approximative inference.

1. Inference on achain

We consider the following graphical model where (X;);cy arerandomvariableswith V' = [n] taking
values in [1, K, with joint distribution defined as:

n

p(zr) = ; f[l?/fz(fﬂz) H wifl,i(xifla ;)

=2

We wish to compute p(z;) for a certain j € [1,n]. The naive solution would be to compute the
marginal with the greedy formula

p(z;) = Z p(T1, .., @)

Tv\{s}
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Unfortunately, this type of calculation is of complexity O(K™).
We therefore develop the expression':

Z Hd}z Z; H¢z 1,3 337, laxz)

IV\{J} i=1

7 Z le L4 del 1, ‘xl lvxl)wn(xn)wn 1n($n lyxn)

IV\{z} i=1

7 2 X H i) H Ui 14 (i1, )0 () n 10 (Tn 1, T)

Z oy omy o il

Z sz T sz 1, xz 1, Tj an Ty wn 1n(xn 1,.]?,1)

Ty\{j,n} =1

which allows us to bring out the messaged passed by node n to noden — 1:

Hn—sn—1 In 1 an T, ¢n ln(xn 17$n)

When continuing, we obtain by induction:

p(xj) = ; Z le X H¢z 1,3 xz 17I1)N3+1—>](xj)

cTi—1 1=1

where we have the following definitions of the descending messages, fori € [1,n — 1]

Miv1-i(Ti) = Z ¢i+1(%+1)¢i,i+1($i,9€i+1)ﬂi+2—>i+1($i+1)
Tit1

with convention pi,, 11, = 1.

We can do the same method in an ascending way, by defining the messages fori € [1,n — 1]

NHiH(f’CiH) = Z Tﬂi(%)wi,iﬂ(fﬁi, xi+1),ui71ﬁi($i)

with convention yy_.; = 1. Finally we obtain:
1
P(25) = -1 ()85 () 14155 (25)

Each of the messages is computed with complexity O((n—1) K?), and with those 2(n—1) messages
calculated, one can easily compute p(z;) for all j and z;. We also obtain Z by summing:

7 = Zp(xj) = Zuj_Hj ()05 () 15 (x5)

lifj <n
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I1l. Inference in undirected trees

We consider the following general joint probability:

p(x) = ; [T ¢i(z) TT wis(ai, )

eV (¢,4)eE

We note i the vertice for which we want to compute the marginal law p(z;). We set i to be the
root of our tree. Forall j € V, we note C; and D, respectively the set of children and the set of
descendants of ;.

For a tree with at least two vertices, we define by recurence if j € C;:

F(2i, 25, 2p,) = Vi j (i, 25)0(x;) ] Flaj, 2e, 2p,)
kJECj

where F'(z;, i, xp,) = 1if Dy = @.

Then by reformulating the marginal:

pw) =5 X o) I] Flanay,am)

Ty\{i} Jj€C;

1
= i) [[ > Flwiwj,0p,)

j€ei; Zj,TD;

= ;W(%’) IT > iy, z)v(z;) I1 Flaj, 2k, 2p,)

j€cC; TjH2TD; keC;

= ;%’(ﬂfi) 11 > gl wp)s(ay) TT D° Flay, o, 2p,)

jec: = ReC; Tam,
P‘kaj(xj)
1
= E%(fi) IT D2 (s, ) wi(xy) 11 sems(2y)
JEC; T; keC;
Bj—i ()

which leads us to the recurrence relation for the Sum Product Algorithm (SPA): if j € C;

fj—si(i) = Z¢i,j(xi7xj)¢j(xj> IT ()

k‘ECj
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IV. Sum Product Algorithm (SPA)

IV.A. Sequential SPA for a rooted tree

We deduce the following algorithm:

Algorithm 4: Sum Product Algorithm for a rooted tree
Input :G, (¢y);, (¢i)i,, rooti, z;
Output: p(z;)
1 forall leaf ( do
2 | Send message (iyr,(Tr,) = X, Ve(e)hen, (20, 2x,) for all zr,
3 end
4 while i did not receive all messages from its children do
s | forallnode k € [n] such that k has received all messages from its children do
6
7
8
9

| Send message p s, (7, ) for all z,
end
end

Compute p(z;) = 2v;(x;) [ljee, Hj—i(Ti)

This algorithm only enables us to compute p(z;) at the root. To be able to compute all the marginals
(as well as the conditional marginals), one must not only collect all the messages from the leafs to
the root, but then also distribute them back to the leafs. In fact, the algorithm can then be written
independently from the choice of a root.

IV. B. SPA for an undirected tree

The case of undirected trees is slightly different:

Algorithm 5: Sum Product Algorithm for an undirected tree

Input : G, (¥;);, (¥5)i,5, nodedo, z;,
Output: p(z;,)

1 forall leaf ¢ do

2 | Send message (iy—r, (25,) forall z,
3 end
4
5

while at least one edge has not been used to transmit a message do

for all node j € [n] such that j has not send a message to one of its neighbors, say i, and
has received messages from all its other neighbors do

6 | | Send i yi(wi) = X, ij(wi, 251 (x;) Tleenon iy Ha—i(;) forall z;

7 | end

s end

Compute p(z;,) = [777]

©
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IV.C. Parallel SPA (flooding) [todo]

1. Initialise the messages randomly

2. At each step, each node sends a new message to each of its neighbours, using the messages
received at the previous step.

IV.D. Marginal laws

Once all messages have been passed, we can easily calculate all the marginal laws

. 1
VieV, p(z;) = 7 | D) (8.1)
keN (3)
o 1
V(l,j) € F, p(mi,xj) = 7 (5 ( )w](x] wgz Zi, T z H :uk%z xz H Mkﬁ](l’ﬂ (8.2)
keN (i)\j keN(5)\i

IV. E. Conditional probabilities

We can use a clever notation to calculate the conditional probabilities. Suppose that we want to
compute

P(%‘ | T5 = 3,10 = 2) X p(%‘, T5 = 3,%T10 = 2)

We can set
Us(xs) = s(x5) 6(x5,3)

Generally speaking, if we observe X; = x;, for j € J,ps, we can define the modified potentials:

bjx;) = bj(x;) (5, 250)

such that
P(2 | Xyobs = Tyobso) H i) T (i x;) (8.3)
zeV (3,5)EE
Indeed we have
p(x | Xiobs = xJobsO) p(XJobs xJobsO H 6 l‘], $]0 (8~4)
J€Jobs

so that by dividing the equality by p(Xobs = ZJobs0) We Obtain the previous equation with 7 =
Zp(XJobs = xJobsO)-

We then simply apply the SPA to these new potentials to compute the marginal laws p(x; | X jobs =

xJobsO)
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V. Remarks

VI.

e The SPAisalso called belief propagation or message passing. On trees, it is an exact inference

algorithm.

If G is not a tree, the algorithm doesn’t converge in general to the right marginal laws, but
sometimes gives reasonable approximations. We then refer to “Loopy belief propagation",
which is still often used in real life.

The only property that we have used to construct the algorithm is the fact that (R, +, x) is a
semi-ring. Itisinteresting to notice that the same can therefore also be done with (R, , max, x)
and (R, max, +).

Example For (R, max, x) we define the Max-Product algorithm, also called “Viterbi algo-
rithm" which enables us to solve the decoding problem, namely to compute the most
probable configuartion of the variables, given fixed parameters, thanks to the messages

(i) = max | (i, )05 () T s () (8.5)

Tk

If we run the Max-Product algorithm with respect to a chosen root, the collection phase of
the messages to the root enables us to compute the maximal probability over all configura-
tions, and if at each calculation of a message we have also kept the argmax, we can perform
a distribution phase, which instead of propagating the messages, will consist of recursively
calculating one of the configurations which will reach the maximum.

In practice, we may be working on such small values that the computer will return errors. For

instance, for k binary variables, the joint law p(z1, xs...2,,) = 2—ncan take infinitesimal values

for a large k. The solution is to work with logarithms: if p = 3, p;, by setting a; = log(p;) we
have:

log(p) = log [z e]

log(p) = a; + log [Z el )] (8.6)

With a; = max; a,. Using logarithms ensures a numerical stability.

Proof of the algorithm

We are going to prove that the SPA is correct by recurrence. In the case of two nodes, we have:

p($1, xz) = ;wl(%)wz(l‘z)lhg(xl, xz)

We marginalize, and we obtain

p(1) = Za(0) Y whaler, 22)en()

p2—1 (1)
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We can hence deduct )
p(xl) = Ewl(xl)/m—ﬂ(xl)
And

P(xz) = ;%(51’2)#142(@)

We assume that the result is true for trees of size n — 1, and we consider a tree of size n. Without
loss of generality, we can assume that the nodes are numbered, so that the n—th be a leaf, and we
will call 7,, its parent (which is unique, the graph being a tree). The first message to be passed is:

Mn—r,, (xﬂ'n) = Z an(xn)wn,ﬂ'n (ZEn, xrn) (87)

Tn

And the last message to be passed is:

Hrp—n (xn) = Z wrrn (-fﬂn)wn,ﬂ'n (mna x?rn) H Hi—m, ('Tﬂ’n> (88)

Ty keEN (mn)\{n}

We are going to construct a tree T of size n — 1, as well as a family of potentials, such that the
2(n — 2) messages passed in T’ (i.e. all the messages except for the first and the last) be equal to
the 2(n — 2) messages passed in T'. We define the tree and the potentials as follows:

e T=(V,E)withV ={1,...,n—1}and E = E\ {n, m,} (i.e., itis the subtree corresponding
to the n — 1 first vertices).
e The potentials are all the same as those of T', except for the potential

1;7% (mﬂn> = Ym, ('rﬂn>/’bn‘>7rn (mﬂn> (8.9)

e Therootisunchanged, and the topological order is also kept.

We then obtain two important properties:

1) The product of the potentials of the tree of size n — 1 is equal to:

Py, xy1) = ; H Vi(;) H 1/Ji,j(xi7xj>'&7rn(x7rn)

1#n,Tn (i.9)€E\{n,mn}

= DT ) T e n) Y (e, ) ()

i#n,m, (t.5)€E\{n,mn}
1 n
= > i) TI vl a))
an 2 =1 (i.))EE

= Zp(l’l, Ce ,xn—hxn)

Tn

which shows that these new potentials define on (X3, ..., X,,_1) exactly the distribution induced
by p when marginalizing X,,.
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2) All of the messages passed in T' correspond to the messages passed in T (except for the first and
the last).

Now, with the recurrence hypothesis that the SPA is true for trees of size n — 1, we are going to
show that it is true for trees of size n. For nodes i # n, m,, the result is obvious, as all messages
passed are the same:

Vie V\ {n,m}, plas) = ;wi(xi) I et (8.10)
kEN (i)

For the case i = m,,, we deduct:

1 - .
p(zr,) = Zwﬂn(xﬂn) H Ur—r, (T, ) (product over the neighbours of 7, in T')
keN ()

= ;%Eﬂn (Iwn) H Hk—smy, (an)

kEN (mn)\{n}

1
= E¢7Tn (xﬂ'n)lun—)ﬂn (xﬂ'n) H /’Lk‘—MTn ('rﬂ'n)

keN (mn)\{n}
1
= Zwﬂn ('rﬂ'n) H :uk*ﬂrn (‘rﬂ'n)
keN(ﬂ'n)
For the case i = n, we have:
p(xTH ‘rﬂ'n> = Z p($) = Q/Jn(xn)wwn (an)wn,wn (ITH Iﬂ'y,,) Z ¢ (Z‘ )1/} (xp('i)vzb (x T )
TV\ {n,mn} TV\{n,mn} TN TR AT 0 )T AT T
O‘(xﬂ'n)

Therefore:

p(xTH l’ﬂ'n) - ¢Wn (:L‘wn>a(x7rn)¢n($n)¢n,7rn (m’NA xﬂ'ﬂ) (8'11)

Consequently:

P(2r,) = VY, (T, ) (T, Z VY (Tn) 0z (T, T,y )

Hn—mp (xﬂ'n)

Hence:
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p(Tx,)
a(x,,) = ~ (8.12)
) = o) iin rmaln)
By using (7.31), (7.32) and the previous result, we deduct that:
P, Tr,)) = Vo (T, )V (T0) Y, (Ty T, Plor,)
Vo (T ) Hn s, (T, )
1
7wﬂ'n (.1'71—”) HkEN(W ) :uk’_)ﬂ'n (xﬂn)
= wﬂ'n Ly, ¢n Tn wn,ﬂn Tny Try, Z =
(@m ) Un (@), ) r o e ()
1
= Ewﬂ‘n (xﬂ'n)wn(xn>wn,7rn (l’n, :Cﬂ’n) H Hk—m, (:Cﬂ'n)
keN (mn)\{n}
By summing with respect to z,, , we get the result for p(x,,):
1
p(n) = Zp(fﬂn, Tr,) = an(xn)/lfrn%n(xn)
VI.A. Proposition:
Letp € L(G), for G = (V, E) atree, then we have:
plns ) = = [y [T 2t 813)
Z v (i,j)€E p(xi)p(x;)

Proof: we prove it by reccurence. The case n = 1 is trivial. Then, assuming that n is a leaf, and we
canwritep(xq,...,2,) = p(z1, ..., 2h_1)p(zn | 2., ). Butmultiplyingby p(x,, | z,,,) = #”&L))p(xn)
boils down to adding the edge potential for (n, 7,,) and the node potential for the leaf n. The for-

mula is hence verified by reccurence.

VI.B. Junction tree

Junction tree is an algorithm designed to tackle the problem of inference on general graphs. The
idea is to look at a general graph from far away, where it can be seen as a tree. By merging nodes,
one will hopefully be able to build a tree. When this is not the case, one can also think of adding
some edges to the graph (i.e., cast the present distribution into a larger set) to be able to build such
a graph.

The trap is that if one collapses too many nodes, the number of possibles values will explode, and
as such the complexity of the whole algorithm. The tree width is the smallest possible clique size.
For instance, for a 2D regular grid with n points, the tree width is equal to y/n.
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Hidden MARKOV Model

The Hidden MARKoV Model' is one of the most used graphical models.

We consider zy, z1, . . ., zr states corresponding to latent variables and yq, v, . . ., yr states corre-
sponding to observed variables. The model assume that:

e (zt)o<t<r is @ MARKOV chain (hence the name of the model),

e each z; takes K possible values, denoted by [1, K],

e 2, follows a multinomial distribution M(1, my),

e the transition probabilities are homogeneous: p(z; = k| 2z,_; = k') does not depend on t.
We denote by A the transition matrix,

the emission probabilities p(y; | z;) are homogeneous, i.e. p(y; | z:) = f(yt, 21),

e The joint probability distribution function can be written as:

T—-1 T
(20, .- 20,90, - - Y1) = P(20) H (241 | 20) Hp(yt | 2¢)
t=0 t=0
We want to perform different tasks that on this model:
o filtering: compute p(z; | v, ..., ¥t—1),
e smoothing: compute p(z; | y1,- .., yr),
e decoding: find max., ., p(z0,...,27|%0,--.,yr).

All these tasks can be performed with a sum-product or max-product algorithm.

I. Sum-product

From now on, we note the observationsy = {7, ..., % }. The distribution on y; simply becomes

the delta function 9, 3,.

To use the sum-product algorithm, we define 27 as the root, i.e. we send all forward messages to
zr and go back afterwards.

"modéle de MARKOV caché in french

MVA 2019/2020 Probabilistic Graphical Models Page 73 of 122



CHAPTER 9 - HIDDEN MARKOV MODEL

Forward We compute the following messages:

Vt € [[07 T]]a :uyt—>zt (Zt) = Z 6yt:§tp(yt | Zt) = p(yt | Zt)
Yt

and recursively:

MZ,1—>ZQ(ZO) == p(20> and \V/t E [[07 T_l]]7 /’LZt—%ZH,l (Zt-l-l) = Zp(zt-l-l | Zt)ﬂzt,1—>zt (Zt)/l/yt—)zt (Zt>

Zt

With those messages we will be able to compute some conditional probabilities. Indeed let us
introduce the "a-message":

Vt € [[07 T]]? at(zt> = Mytézt(zt)lu’ztflézt(zt)

We have the following property, due to the definition of the messages: «;(z;) represents a marginal
of the distribution corresponding to the sub-HMM {z, ..., z:}:

ProposiTiON I. .1. We have:

VtE [[OaT]]a at<zt) :p(zbgOa"'ayt)

PROOF |t is easy to obtain the following recursion formule for the a-messages:

Ve [0,7 1], ar1(241) = PFeia | 2041) D2 p(2e41 | 26)e(22)

Zt

Note that the result is true for ¢ = 0. Thus by induction, we have if a;(z;) = p(z, 9, - - -, 7;) for
somet € [0,7 — 1]:

g1 (2e41) = P@t+1 | ze41) ZP(ZHl | z¢) v (2) by a-recursion

2t

= Zp(?t.;q | Zt41y 2ty Yoy - - - 7yt)p(zt+1 | 2ty Yoy - - - 7?1&)]9(27&7?07 e a@) by independences
zt

= ZP(ZtH, 26, Tgs -+ s Yyg1) by chain rule
Zt

= (241, Tor - > Jes1)

Backward We compute recursively the following messages:

Mz —zr (ZT) =1 and vt € [[17T]]7 “Ztﬁzt—l(zt—l) = Zp<zt|Zt—l)luzt+1—>zt(zt)y@t—ﬂt(zt)

Zt

Defining the " 5-message”:
Vt € [[O’ T]]? Bt(zt) = Mzip1—2 (Zt)

we have:
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PROPOSITION I. .2.
vt e [0,T], Bi(z) =2Fes1s---Tr | 2t)

PROOF Use the recursion formula:

Ve e [0,T —1], Bilz) = D p(zee1 | 20)p(Uppa | 2e41) Berr (2e41)

Zt+1

O
Using both ae and /3 messages allow to compute several quantities:
ProposiITION I..3. Forallt € [0,T], we have:
p(zt:Yos - - - Ur) = u(ze) Be(z)
from which we can easily deduce:
_ _ _ _ Oét(Zt)Bt(Zt)
e =) az z and z e =
p(@o Jr) ; +(2t) B¢ (z1) p(z | Yo Ur) . ae(20) B z)
We also have fort € [0, T — 1]:
_ 1 _
p(zt, Zt+1 | Yoy - - - 7yT) = fat(zt)ﬁt+l(zt+l)p(zt+l | Zt)p(yt+1 | Zt+1)
p(To» - Ur)
gz} Implementation is not difficult, but requires to avoid errors in the indices! Also, in order to

prevent numerical errors, it is better to code them using log-probabilities.
Il. EMalgorithm

With the previous notations and assumptions, we write the complete log-likelihood ¢.(0) where 6
is the vector of parameters of the model?:

T—1 T
£.(6) = og (p(z0) [T p(zee1| 20 [T ol 20))
t=0 =0
T—1 T
= logp(z0) + Y log (21| z) + Y log p(y, | z1)
t=0 t=0
K T-1 K T K
= Oplog(mo)e+ Y. D ey ksn log Ap + D> 0,k 1og [y, 2t)
k=1 t=0 k,k'=1 t=0 k=1

When applying EM algorithm to estimate the parameters of this HMM, we use JENSEN’s inequality
to obtain a lower bound on the log-likelihood:

1ng<y07 SR ’yT> 2 Eq{logp(207 s 7ZT’yD’ s 7?T)] - EQWC(e)]

2containing g, A but also parameters for f
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At step i, we use g defined by q(zo, . . ., 2r) = peir (20, - - -, 21| Ug, - - -, Ur)- Thus the E-step consists
in replacing the § values in the log-likelihood expression by their expectation. For instance 9, . is
replaced by pyii) (z0 = k| 7).

For the M-step, we maximize the obtained expression w.r.t. # in the usual manner to obtain a new
estimator §'™1. The key is that everything will decouple, thus maximizing is simple and can be done
in closed form.

Addressing practical implementation issues

Since o and f3; are respectively joint probabilities of £ + 1 and T' — t variables they tend to become
exponentially small respectively for ¢ large and ¢ small. A naive implementation of the forward-
backward algorithm therefore typically leads to rounding errors. It is therefore necessary to work
on a logarithmic scale.

So when considering operations on quantities say a, . . ., a, whose logarithms are ¢; = log(a;),
the log of the product is easily computed as /;; = log ], a; = Y, ¢; and the log of the sum can be
computed with the smallest amount of numerical errors by factoring the largest element. Precisely
if i, = argmax; a; and ¢, = log a;, then:

s, =log» a; =log» exp((;) = log <exp(€*) > exp(l; — &)) =/, +log <1 + > exp(¢; —E*))
i i i i
which provides a stable way of computing the logarithm of the sum.

For hidden MARKOV models, remember that the max-product algorithm?® allows to compute the
most probable sequence for hidden states.

3a.k.a. VITERBI algorithm
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Back to classification

[todo]

I. Principal Component Analysis (PCA)

Framework: z1,...,zy € R?
Goal: put points on a closest affine subspace

a. Analysis view

Find w € R? such that Var(z7w) is maximal, with | |w| | =1

With centered data, i.e. % Zfz\’zl x, = 0, the empirical variance is:

. 1 Y 1
Var(z'w) = N > (zfw)? = NwT(XTX)w

n=1

where X € RY*4 is the design matrix. In this case: w is the eigenvector of X7 X with largest
eigenvalue. It is not obvious a priori that this is the direction we care about.
If more than one direction is required, one can use deflation:

1. Findw
2. Project x,, onto the orthogonal of Vect(w)

3. Startagain

b. Synthesis view

min,, >N d(z,, {wTz = 0})2withw € RP, | |w]| | = 1.

Advantage: if one wants more than 1 dimension, replace {w”z = 0} by any subspace.
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c. Probabilistic approach: Factor Analysis

Model:

A= (... i) € RO<E

X € RE ~ N(0,1)

e ~N(0,¥), e € R?independent from X with ¥ diagonal.
YERLY =AX +p+e

WehaveY | X ~ N(AX + pu, ¥).
Problem: get X | Y.

(X,Y) is a Gaussian vector on R¥** which satisfies:

E[X] =0 = ux
EY] =E[AX + p+ €ejp = py
Sxx =1

Yxy = Cov(X,AX + pu+¢) = Cov(X,AX) = AT
Yyy = Var(AX + ¢, AX +€) = Var(AX, AX) + Var(e,e) = AAT + U

Thanks to the results we know on exponential families, we know how to compute X | Y
EX|Y =yl = px+SxyEyy(y— py)
COV[X | Y = y] = ZXX - ExyE}_/%/EYX
In our case, we therefore have:
EX|Y =y] = ATAA +9)7'(y —p)
Cov[X|Y =9y] = I—AT(AAT + )7 1AT
To apply EM, one needs to write down the complete log-likelihood.

1 1 1
mymaym—ixix—;Y—AX—uF@%Y—AX—m—ibyww

Trap: E[X X7 | Y] # Cov(X | Y)
Rather, EI X X7 |Y] = Cov(X |Y) + E[X |Y]E[X | Y]T

REMARK . .1.

e Cov(X) = AAT +: our parameters are not identifiable, A < AR with R a rotation gives
the same results (in other words, a subspace has different orthonormal bases).
e Why do we care?

1. A probabilistic interpretation allows to model in a finer way the problem.

2. ltis very flexible and therefore allows to combine multiple models.

1. Multiclass classification

We return briefly to classification to mention two simple yet classical and useful models for multi-
class classification: the naive Bayes model and the multiclass logistic regression. We consider clas-
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sification problems where the input datais in X = R? and the output variable is a binary indicator
inY ={y {0, 1} [y1 +... +yx =1}

Il. A. Naive Bayes classifier

The naive Bayes classifier is relevant when modeling the joint distribution of p(z | y) is too compli-
cated. We will present it the special case where the input data is a vector of binary random variable.
X Qw—{0,1}7

A practical example of classification problem in this setting is the problem of classification of doc-
uments based on a bag of word representation. In the bag-of-word approach, a document is rep-
resented as a long binary vector which indicates for each word of a reference dictionary whether
that word is present in the document considered or not. So the document i would be represented
by a vector z¢ € {0, 1}?, with :c; = 1iff word j of the dictionary is present in the ith document.

As we saw in the second lecture, itis possible to approach the problem using directly a conditional
model of p(y | ) or using a generative model of the joint distribution modeling separately p(y)
and p(z | y) and computing p(y | ) using Bayes rule. The naive Bayes model is an instance of
a generative model. By contrast the multi class logistic regression of the following section is an
example of a conditional model.

Y is naturally modeled as a multinomial distribution with p(y?) = [T, 7/F. However p(z' | i) =
plal, ... ,x; | 4*) has a priori 2?7 — 1 parameters. The key assumption made in the naive Bayes
modelis that X7,..., X, are allindependent conditionally on Y. This assumption is not realistic
and simplistic, hence the term “naive". This assumption is clearly not satisfied in practice for doc-
uments where one would expect that there would be correlations between words that are not just
explained by a document category. The corresponding modeling strategy is nonetheless working
well in practice.

These conditional independence assumptions correspond to the following graphical model:

The distribution of Y is a multinomial distribution which we parameterize with (7, ..., 7x), and
we write yj, = P(Xj(z) = 1]Y" = 1) We then have

p(X' =2 Y =y") = p(xs, y:) = pla’ |y )p(y') = f[p(ﬂﬂé |y )p(y")
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which leads to

:{ﬁﬁukﬂk 1 — )% y’“]HW

7=1k=1 =

and
g p(a'f) = 32 (X2 (s5ukTog e + (1 = a5k log(1 = ) + o g )
We can then use Bayes’ rule (hence the “Bayes” in “Naive Bayes”), which leads to
logp(y' |2') = n(z") "y’ — A(n(z"))
with U(x) = (nl(x)a s 7nK($>) S RK and
Hjk

ne(z) = w x + by, wp €RP, [wk]jzlogl " b, = log .
— i

Note that, in spite of the name the naive Bayes classifier is not a Bayesian approach to classifica-
tion.

a. Multiclass logistic regression

In the light of the course on exponential families, the logistic regression model can be seen as
resulting from a linear parameterization as a function of x of the natural parameter n(x) of the
Bernoulli distribution corresponding to the conditional distribution of Y given X = x. Indeed for
binary classification, we have that Y | X = = ~ Ber(u(z)) and in the logistic regression model we

set pu(z) = exp(n(x) — A(n(x))) = (1 + exp(—n(x)) " and n(z) = w'z +D.

It is then natural to consider the generalization to a multiclass classification setting. In that case,
Y | X = zis multinomial distribution with natural parameters (1, (), ..., nx(z)). To again param-
eterize them linearly as a function of z, we need to introduce parameters w;, € R? and b, € R, for
all1 < k < K and set i (z) = w} z + b. We then have

ek (z) ew,jz-i—bk

Zgzl e @) K e Wty

pp-(Yi = 1[X = 2) = exp(ni(z) — A(n(x))) =

and thus B )
log p.p.(Yi=y| X =2)=) ye(w, z + by,) — log [ > W+ |

k=1 k'=1

Like for binary logistic regression, the maximum likelihood principle can used to learn (wy, bx )1 <k<x
using numerical optimization methods such as the IRLS algorithm.

Note that the form of the parameterization obtained is the same as for the Naive Bayes model;
however, the Naive Bayes model is learnt as a generative model, while the logistic regression is
learnt as conditional model.

We have not talked about the multi class generalization of Fisher’s linear discriminant. It exists
as well as the multi class counterpart of the model seen for binary regression. It relies like in the
binary case on the assumption that p(z | y) is Gaussian. This is good exercise to derive it.
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lll. Learningon graphical models

lll.A. ML principle for general Graphical Models

Directed graphical model

Proposition : Let GG be a directed graph with p nodes. Assume that (X*!,...X™) are i.i.d., with p
features:i.eVi € {1,..,n}, X; € R?, and that are fully observed, i.e., there is no latent or hidden
variable among them. Then the ML principle decouples in p optimisation problems.

Proof : Let us assume we have a decoupled model Pg, i.e. :

Po = {ps(x prjm, )[0=(61,...0,) €0 =01 x .. xO,}

2(6) = [o(e'16) = IT 1 oo} .69

P n
:ZZ ng ﬂ]?ej)'
j=1i=1

Then the ML principle reduces to solving p optimization problems of the form

0;).

7r )

meaxfj(ﬁj) s.t 9]‘ S @ju with i Zlng

J

Undirected graphical model

— The ML problem is convex with respect to canonical parameters if: the data is fully observed
(no latent or hidden variable), and the parameters are decoupled.

- In general, if the data is not fully observed, the EM scheme or similar scheme is used.

If the parameters are coupled, the problem remains convex in some cases (e.g linear coupling), but
not in general.

— Ifthe modelis atree, one can reformulate the model as a directed tree to get back to the directed
case.

— In general, to compute the gradient of the log partition function and thus to compute the gra-
dient of the log-likelihood, it is necessary to perform probabilistic inference on the model (i.e. to
compute VA(0) = u(0) = Ep[p(X)]). Ifthe modelis a tree, this can be done with the sum-product
algorithm and if the model is a close to a tree, the junction tree theory can be leveraged to perform
probabilistic inference; however in general probabilistic inference is NP-hard and so one needs to
use approximate probabilistic inference techniques.
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Approximate inference with MONTE-CARLO methods

I. Sampling methods

We often need to compute the expectation of a function f under a distribution p that cannot be
computed. This corresponds to compute = E[f(X)] where X is a random variable following
distribution p.

EXAMPLEl..1. For X = (X3,..., X,,) the vector of variables corresponding to a graphical model,
we can consider f : X — 0x,—,, forafixed subset I of [1, n], then:

ELf(X)] = p(X; = 21)

If we know how to sample from p, we can use the following method:

Algorithm 6: MONTE-CARLO estimation
Input :p,n
Output: /i

1 Draw X, ..., X, Hg- P
2 ﬂ:%ZZ‘L:lf(Xi)

This method relies on the two following results:

PROPOSITION I..1. [LAW OF LARGE NUMBERS (LLN)]
ii.d.

If X is an integrable random variable (E[ X is defined and finite), and (X;);ens ~ X, then:
1 n
-y X; — E[X] as.
n -1 n—-+0o00

THEOREM I..2. [CENTRAL LIMIT THEOREM (CLT)]

If X is a random variable such that Var(X) = 02 < 400, and (X;)icn- "X, then:

\/ﬁ(i iX ~E[X]) = N(0,0%)

n—-+00
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from which we deduce that i 7, kas and E[|i — pl?] = o2/n.

The hard question is: how to sample from a specific distribution?

I.A. Inverse transform sampling

Assume we can draw a uniform U ~ ([0, 1]) distribution’.

We can easily draw a B(p) distribution by taking X = 1<,

DEFINITION |. .1. [INVERSE TRANSFORM]
For a distribution p with cumulative distribution function F', we define

Fliur—inf{r e R|F(x) > u}

| PropPosITION I..3. IfU ~U([0,1]) then X = F~Y(U) ~ p.

PROOF If F'isinversible we have:

p(X <) =p(F1(U) <) =pU < F(y)) = F(y)
Otherwise we admit the result. O
EXAMPLE I. .2. For an exponential distribution?p :  —— Ae™* Ig, (x), we have

log 1

Ft= X and X:—Xln(U)Np

I. B. Ancestral sampling

Consider the problem of sampling from a directed graphical model whose distribution takes the
form .
p(xlu s 7xn) = Hp(xz | xm)
=1

We assume, without loss of generality, that the variables are indexed in a topological order.
Consider the following algorithm:

PrROPOSITION |. .4. The random variable (x4, . .., x,) returned by the ancestral sampling algo-

rithm follows exactly the joint distribution p.

PROOF We prove the result by induction. It is clearly obvious for a graph with a single node.

For two nodes corresponding the pair of variable (X, X5), then either X; and X, areindependent
and we are back to the single node case. Or 7, = {1} and then z; is drawn from pyx, and, given

luse rand in Python
2one of the rare cases admitting an explicit inverse CDF
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Algorithm 7: Ancestral sampling
Input :n,p(X;| X,,)foralli € [1,n]
Output: (z,...,2,)

1 fori =1tondo
2 | Draw z; from p(X; | X, = z,)
3 end

the value z; obtained, x5 is drawn from the conditional distribution p( X5 | X; = x1), then the pair
(21, x2) follows the joint distribution px, x,.

Now, assuming the result is true for n — 1 nodes we prove that it is also true for n nodes. First
note that after sampling x4, ..., z,_1, we know that (z4,...,z,_1) follows the distribution given
by 17} p(x; | #,,) which is exactly the marginal distribution of (X;,..., X,,_;). But then x,, is
drawn according to the distribution p(X,, | X, = z.,) which by the MArRkov property is equal
to p( X, | (X1,..., Xn_1) = (21,...,20_1)). Applying the two nodes case to X, = X, and X; =
(X1,...,X,_1),weobtainthat (z;,...,x, 1)isindeed drawn from the joint distribution (X3, ..., X,,).

By induction the result is proven. O

I.C. Rejection sampling
Assume that p(X) the distribution of X admits a density w.r.t. some measure 12, known up to a
normalizing constant, i.e. we know p such that p = Z.

Assume that we can construct and compute a probability distribution ¢ such that p < kq and as-
sume we can sample from g. We define the rejection sampling algorithm as :

Algorithm 8: Rejection Sampling
Input :n,p,q,k
Output: =

1 accept =0
while accept = 0 do
Draw x from ¢

w N

Draw accept from B( ,fq((?

7)

s end

I PropPoOSITION |..5. The returned sample x returned by the rejection sampling follow distribution
.

PrRooOF We write the proof for the case of a discrete random variable. We have:

p(X =z, X isaccepted) = p(X isaccepted | X = z)p(X =x) = q(z) = —=

3typically the LEBESGUE measure for a continuous random variable and the counting measure for a discrete variable
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and so
p(X is accepted) = Zp(Z) — ip
which gives:
= - _px) k
p(X = x| X is accepted) = = p(2)

To write the general version of this proof formally for any random variable admiting a density
w.r.t. 1, we would need to define A to be the BERNOuULLI random variable such that A = 1 x is accepted
and to consider px_ 4 the joint density of (X, A) w.r.t. the product measure i x v, where v is the
counting measure on {0, 1}. The proof is then the same as above. ]

REMARKI..1. Inpractice, finding g and k such that acceptance has a reasonably large probability
is hard, because it requires to find a fairly tight bound on p(z) over the entire space.

I.D. Importance sampling

Assume X ~ pandY ~ ¢. We aim at computing the expectation of a function f(X). One has:

— [ swwtards = [ B g(0)a0 = B0 23] = Elg(v)

ql\x

where g = fp/q. Thus is we can sample from ¢, we can approximate E[f(X )] by a MONTE-CARLO
estimation:

1S 1 & p(¥3)
Ef(X)]~p=—-) g; - fy;
O] == 1 3) = £ 3 1005
where (Y;)1<ijeqn "~ ¢. The weights (w(Y;) = z(g))1<z<n are called importance weights. We have

/\

i=1 q()
fY(Y)
q(Y)

1
n
1

i/f (2) pl) CI dx:/f(l’)p(x)dx:u
Var(f (

LEMMAL. .6. Assume|f| < M a.s., then:

Var(ji) < ]\fE[qu{;]

PROOF It simply comes from Var(Z) < E[Z?]. O
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REMARKI..2. We have:

EBEQ] :/p(é))2dx:/Wde+/2p(x) — q(x)dz = /W‘-de "

q q(z) q(x)

x?2 divergence between p and ¢

Hence, importance sampling will give good results if ¢ has mass where p has. Indeed, if for some
v, q(y) < p(y), our estimator may have a very large variance.

Extension of importance sampling Assume we only know p and g up to a constant: p = Z% and
q= Ziq, with p and § known. Then:

and the LLN gives

L1, () Z,
== Y; Zp _
Taking f = 1, we get
5 1 &p(Ys) Z,
Loty = — — P
p/q n 12::1 q(yi) n—+oo 7, a.s

Thus we obtain:

fl=——/I — @ as.

REMARKI..3. Evenif Z, = Z, = 1, in practice renormalizing by Zp/q often improves the estima-
tion.

II. MARKOV chain MONTE-CARLO

Unfortunately, the previous techniques are often insufficient, especially for complex multivariate
distributions, so thatitis not possible to draw exactly from the distribution of interest or to obtain a
reasonably good estimates based onimportance sampling. The idea of MCMCis thatin many cases,
even though it is not possible to sample directly from a distribution of interest, it is possible to
construct a MARKoV chain (X};);>o whose distribution ¢; = p(X}) converges to a target distribution

p(Y).

The idea is then that if T is sufficiently large, we can consider that for all ¢t > T, X; follows ap-
proximately the distribution p and so:

1 T 1 T
=7 3, 0 = o 3 100, B

where (Y})>0 Wy
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Note thatthereisadouble approximation: one due to the the approximation ¢; ~ pfortsufficiently
large and the second due to the use of the law of large numbers. Note also that the draws of (X} );>¢
are not independent (but this is not necessary here to have a law of large numbers).

The period before T is often called the burn in period. The most classical procedure to obtain such
a MARKov chain in the context of graphical models is called GiBBS sampling. We will see it in more
details later.

In this whole section we write X, instead of X (¥ which would match better with
other sections. Indeed, here X; should be thought typically as the whole vector of variables
corresponding to a graphical model X; = (X} ;)1<;<,. We write ¢ as an index just to simplify
notations.

In the following we assume that we work with random variables taking values in a set X’ with | X| =
K < 4o00. However K is typically very large since it corresponds to all the configurations that the
set of variables of a graphical model can take.

One can find a review on MARKOV chains in Annex VI. .

METROPOLIS-HASTINGS algorithm We considera proposal distribution Z | X that we can sample,
denoted by R, and we define an acceptance probability a(z, z) of accepting Z = z when X = .

Algorithm 9: METROPOLIS-HASTINGS
Input :q. R T «
Output: (z¢)cfo7]

1 Draw z( from ¢

2 fort € [[1,7] do

3 | Drawz fromp(Z | X, 1 =x41) = R(wy_1,.)

4 | Setz; = z with probability a(z;_1, z;), otherwise set x; = ;4
5 end

ProposiITION Il. .1. Assume X is finite and R is the transition matrix of an irreducible [aperi-
odic?] MARKoV chain such that R(x,z) > 0 = R(z,x) > 0forany z,z € X and p(x) > 0 for
anyz € X.

Then it exists a choice of « such that the METROPOLIS-HASTINGS algorithm defines a MARKOV chain
that converges to p.

PROOF We define S the transition matrix of (X;);>o. We have:

B R(z,z)a(x, 2) ifz # 2
Vz # x, S(:E: Z) - { R(ZI}, x) + Zz,#w R(I, Zl)(l — 04(11;, Z/>> otherwise

We want to choose S such that we have detailed balance®: we just need to have it for every z # 2

*i.e. Siisreversible
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as it is automatic for (x, z). Then

p(z)S(z,2) =p(2)S(z,2) <= p@)R(z,2)a(x,z) =p(2)R(z,z)a(z,z) <= =

Defining v as:
p(Z)R(Z, ZL’))
p(x)R(z, 2)
then « takes values in [0, 1] and the last equation of the above equation is satisfied for all = # z.
Thus pis a reversible distribution of the chain, so the chain converges to p as we can show ]

Vo,z, o(z,z)=min (1,

Illl. Approximate inference with MCMC

lll.A. GiBBs sampling

Let us consider an undirected graph and its associated distribution p from which we want to sample
(in order to do inference for example). We assume that:

e Itisdifficult to sample directly from p.
e Itis easy to sample from® P, (X, | X_,).

The idea consists in using the MARKOV property so that:
Pp(Xi | Xoi) = Pp(Xi | X,)

where N; is the MARKOV blanket of nodei. Based on this, GIBBS sampling is a process that converges
in distribution to p.

The most classical version of the GiBBS sampling algorithm is the cyclic scan GiBBS sampling:

Algorithm 10: cyclic scan GiBBS sampling
Input :T, (Pp(XZ | X*i))lgign
Output: z(7)

Initialize z(® and t = 0
whilet < T'do
fori € [1,n] do
t=t+1
5 Draw " from P,(X; | X_; = 24)
6 Set x§-t) = xg»t_l) forj #1
7 | end
s end

H W N =

Another version of the algorithm called random scan GiBes sampling consists in picking the index
i atrandom at each step t:

>recall that X_; = X}, 4y
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Algorithm 11: Random scan GIBBS sampling
Input :T, (]P)p(Xz | X—i))lgign
Output: =7

1 Initialize 2(%)

2 fort € [1,7] do

3 Drawz’from U([1,n])

4 | Drawz!” from P (X | Xy = 25h)
5 Setxg-)—xjt 1forj7éz

6 end

l1l. B. Application to the IsiNnG model

Let us now consider the ISING model on a graph G = (V, E) with V' = [n]. X is a random variable
which takes values in {0, 1}" with a probability distribution that depends on some parameter #:

Ve e {0,1}", py(z) =exp (Z T + Z NijTiT; — A(n))

1% (i,J)€eE

To apply the Gibbs sampling algorithm, we need to compute P(X; | X _;).

We have
1
p(z) = p(xi, 2_5) = Zn) &P (mxi + > ngmi Yy 0+ > 77jj’$ﬂ$j’)
U JEN; j#i (j.3")EE | j,j'#i
and thus

1
ple_;) = A0 Z (mz + > migzr 4 Y+ > 77jj’$j$j/>
z€{0,

JEN; JF (G.3")EE | 4.'#i

Taking the ratio of the two previous quantities, the two last terms of the exponentials cancel out
and we get

exp <m$i + 2jen, nijxixj>

L +exp (m + 2jen: 771']'%‘)
In particular:
1
PX; =1]z) = = U(m + 77¢j%’>
1 +exp ( — (ni + Xjen, 77z'j%‘)> JEN;

where o is the logistic function o : z — (1 +e7*)7L,

Without surprise, the conditional distribution P(X; = z; | X_; = x_;) only depends on the vari-
ables that are neighbors of i in the graph and that form its MARKOV blanket, since we must have

Since the conditional distribution of X; given all other variables is a BERNouLLI distribution, it is
easy to sample it using a uniform random variable.
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ProposiTioN Ill. .1.  Random scan GiBBS sampling satisfies detailed balance for w the GIBBS
distribution of interest (i.e. the distribution of the graphical model).

PROOF Let us consider one step of the random scan GiBBS sampling algorithm starting from 7 the
distribution of the graphical model. The idea is to prove the reversibility.

We first prove the result for an index i fixed, that is we prove that the transition g; gges(z ) | 2®)
that only resamples the ith coordinate of z(*) is reversible for 7.

w(Ti,x_;)

(D) of the GiBBs distribution

We write p,(z; | x_;) the conditional distribution p,(z; | x_;) =
7. We have:

7T(I(t))Qi,GIBBS(x(t—H) | x(t)) =7 x(t))éx(tfl) x(t?pw<x§t+1) | x(—tZ)

®) (t)

) px(2; |93(3)5xg,+1>7xg>p7r(93§t+1) I:L“(_tz)

(
(
= w2 pale? [257)8 0 eonpa(al ™ | 2)
(I(t+l)>Qi,GIBBS<x(t) |x(t+1))'

and detailed balance for ¢; gess is valid for any <. In the random scan case, the index ¢ being chosen
at random uniformly with probability %, the GiBBS transition is in fact:

SN

d
Z di,GiBBS
1=1

The result is then obtained by taking the average over i in the previous derivation. Thus 7 is a
stationary distribution of the random scan GiBBs transition. ]

ProposiTION IIl..2. [Ifthe GiBBS distribution p satisfies p(x) > 0 forall z € X, the MARKOV chain
defined by the GiBBS sampling algorithm (cyclic or random) converges in distribution to .

ExXerciIcE lll. .1. Extend GiBBS method to PoTTS model.

EXeERCICE Ill. .2. Prove that the GIBBS transition is a special case of METROPOLIS-HASTINGS pro-
posal that is always accepted.
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Variational inference

I. Overview

The goalisto do approximate inference without using sampling. Indeed, algorithms such as METROPOLIS-
HASTINGS or GIBBS sampling can be very slow to converge, besides in practice it is very difficult to

find a good stopping criterion. People working on MCMC methods try to find clever tricks to speed

up the process, hence the motivation for variational methods.

Let us consider a distribution on X finite (but usually very large) and @) an exponential family with
q,(x) = exp(n'¢(z) — A(n)). Let us assume that the distribution of interest p, that is for example
the distribution of our graphical model that we are working with, is in ). The goal is to compute

E,[¢(x)].

Computing this expectation corresponds to probabilistic inference in general. For example, for the
PotTs model, we have

¢(93) = ((iﬂik)iev,lgkgl(, (xik$jk/)(i,j)eE,lgk,k/gK)T

We recall that p = argmin, D(q || p) where:

D(qllp) = E;KQ(@ 10g;8 = Ey[—log p(X)] — H(q)

Since p € Q, itis associated with a parameter 7 thus:

E,[—log p(X)] = Eq[—n"o(X) + A(n)] = —n"Eg[o(X)] + A(n) = —n" u(q) + A(n)

where pi(q) is the moment parameter. Thus we have:

—~D(pllq) =n"pq) + H(q) — An)

which is a nonpositive guantity thus, A(n) > " u(q) + H(q) for all ¢. Maximizing with respect to ¢
in the exponential family leads to:

Aln) = max n'u(q) + H(q)

and the unique value of ¢ that attains the maximum is p.
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REMARK |. .1. Itis possible here to get rid of ¢ and express things only in terms of the moment.
Itis indeed a way to parameterize the distribution ¢ : for a realizable 1 in the exponential family
there is a single associated distribution ¢,. The maximization problem becomes:

S
H
max 1) 4+ (1)

where H (1) = H(g,) and where M is called the marginal polytope and is the set of all possible
moments®. The maximum is only attained for 1 = p(p) = E,[¢(X)], which is exactly the
expectation that needs to be computed.

It turns out that it is possible to show that H is always a concave function, so that the optimiza-
tion problem above is a convex optimization problem.

It is interesting to note that we have thus turned the probabilistic inference problem, which, a
priori, required to compute expectations, that is integrals, into an optimization problem, which
is furthermore convex. Unfortunately this convex optimization problem is NP-hard to solve in
general because it solves the NP-hard probabilistic inference problem, and it is not possible to
escape thefactthat the latteris NP-hard. This optimization problemisthusin generalintractable
and this is because of two reasons:

e forageneral graph the marginal polytope M has number of faces which is exponential in
the tree width of the graph.
e H can be extremely complicated to write explicitly.

9We have seen in the course on exponential families that the distribution of maximum entropy ¢ under the
moment constraint E,[¢(X)] = pis also, when it exists, the distribution of maximum likelihood in the exponential
family associated with the sufficient statistic ¢. This essentially - but not exactly - shows that for any moment
there exists a member ¢ of the exponential family such that . = pu(q). In fact, to be rigorous one has to be careful
about what happens at points of the boundary of the set M: the above statement is correct for . in the interior of
M. The points on the boundary of M are only corresponding to limits of distributions of the exponential family
that can be degenerate, like the BERNouLLIdistribution with probability 1 (or 0) for example in the BERNouLLIfamily
case, which are themselves not in the family

II. Mean field

In order to approximate the optimization problem it is possible either to change the set of distri-
bution @), the moments M or to change the definition of the entropy H. The mean field technique
consists in choosing ¢ in a set that makes all variables independent.

For a graphical model on variables x4, ... x,, let us consider:
Qindep = {C] | V$, Q(x) = H QZ(xz)}
=1
the collection of distributions that make the variables X1, ..., X,, independent.

We consider the optimization problem:

.
+H
Jax 1) 1(q) ()
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Note that in general p ¢ Qindep SO that the solution cannot be exactly u(p).

In order to write this optimization problem for the PoTTs model, we need to write explicitly " 1(q)
and H(q).

Moments in the mean field formulation Let g € Qinqep- We have:

n'wlq) =n"Eg[o(X)] = > nakg[Xu] + > Mgk B[ X Xja |

i€V,1<k<K (,))EB 1<k k' <K
By independance of the variables
Eo[Xir] = Bo, [Xan] = par(q)  and  Eg[ X Xjw] = B, [Xin|Eq, [Xje] = pantiju

Note that if we had not constrained ¢ to make these variables independent, we would in general
have a moment here of the form E, [ X, X x| = fijrr (q). This is the main place where the mean
field approximation departs from the exact variational formulation.

Entropy H(q) in the mean field formulation By independence of the variables one has H(q) =
* . H(q;). Recall that ¢; is the distribution on a single node, and that X is a multinomial random
variable, one has:

HMN

Xir = 1)log ¢;(Xix = 1) Z ik 10g pik
k=1

Mean field formulation for the PoTTs model In the end, putting everything together the opti-
mization problem can be written as

max,, EieV,lngK Nik ik + E(i,j)eE,lgk,k’gK Nijkk! Pik gk — ZieV,lngK Hix 10g fgp,
subjectto © >0, Vie VXK =1

The problem is simple to express, however we cannot longer expect that it will solve our original
problem, because by restricting to the set Qingep, We have restrained the forms that the moment
parameters ;i = E[X;,Xi] can take. In particular since p ¢ Qindep in general, the optimal
solution of the mean field formulation does not retrieve the correct moment parameter y(p). The
approximation will be reasonable if 1.(p) is not too far from the sets of moments that are achievable
by moments of distributions in Qingep, Since the moments of p are approximated by the moments
of the closest independent distribution. Note however that the mean field approximation is much
more subtle than ignoring the binary potentials in the model, which would be a too naive way of
finding an "approximation" with an independent distribution.

One difficulty though is that the objective function is no longer concave, because of the products
ik ttik Which arise because of the independence assumption from the mean field approximation.
Coordinate descent on each of the y; (not the p;;) is an algorithm of choice to solve this kind of
problem. To present the algorithm we consider the case of the ISING model, which is a special case
of the PoTTs model with 2 states for each variable.
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Mean field formulation for the Isiné model When working with the ISING model is simple to
reduce the number of variables by using the fact that p;0 = 1 — p;1, we therefore write y; for p;;
and the mean field optimization problem becomes:

(27 max, 3 M+ X Nialty — 2 (ui log p1; + (1 — p;) log (1 — Mi))
subjectto € [0,1]"

The stationary points for each coordinate correspond to the zeros of the partial derivatives. As

of i
=i + ity — log
8[1’1 jg]:\[i Y 1 - Hi
we obtain
of _ P
5 — 0 = logui/(1—pu) =mi+ doomky = p = U(m +> 77¢ij>
Hi JEN; JEN;

where o is the logistic function.

Note thatin GiBBS sampling g:z(t“) = lLwith probability o (n;+3 ;e n, mi2;)- Thisis called mean field
because the samplingis replaced by an approximation where itis assumed that the samplevalueis
equal to its expectation, which for the physicists correspond to the mean field in the ferromagnetic
ISING model.

Finally, let us insist that the mean field formulation is only one of the formulations for variational
inference, there are several other ones, among which structured mean field, expectation propaga-
tion, loopy belief propagation (which can be reinterpreted as a solving variational formulation as
well), tree-reweighted variational inference, ...
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[todo]

I. Model Selection

I.A. Introduction

Let’s consider two models M;, M such that M; C M, and ©; C ©,. We define fori € [1,2]:

Onr, = argmaxyecg, 10g po(21:m)

X1 X

I QQQ v Q@Q vy

Figure 13.1: Example of Model Section for n = 2 (M; on the l.h.s and M; on the r.h.s)

We want to select the best model. For this, we need to define some kind of model score. We can’t
use the maximum likelihood as a score since we have by definition:

log Py, > log Py,

We are interested in the capacity of the generalisation of the model: we’d like to avoid over-fitting.
Commonly, one way of dealing with that task is to select the size of the model by cross-validation.
Here, we’ll not develop it furthermore.

In this part we present the BAYES factors, which give us the main BAYES principal for selecting mod-
els. Also we will show the link with the penalised version BIC (Bayesian Information Criterion)
which is used by the frequentists so as to "correct" the maximum likelihood and which has good
proprieties. The issue with the selection model task is the issue with the selection of the variables
which are an active topic of research. Note that there are others ways of penalising the maximum
likelihood and of selecting models.
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If po is the distribution of the real data, we wish to choose between different models (M, );c; by
maximising E,, [log pas, (X* | D)] where X* is a new test sample distributed as p, (in fact, it is still
the maximum likelihood principle but we take the expectation on new data).

In the Bayesian framework, we can compute the marginal probability of data for a given model

[ P |6)p(8] M0 = p(D| M)
and, by applying the BAYES rule, compute the a posteriori probability of the model:

p(D | Mi)p(M;)

I.B. BAYES factor

Let’s introduce the BAYES factors, which enable us to compare two models:

p(M;| D) p(D | M;)p(M;)

p(M; | D) p(D| M;)p(M;)

The marginal probability of data p(D | M) = p(x1., | M) can decompose itself in a sequential way
by using:
P@n | 2101, M) = [ D |0)p(6 | 2101, M)d0

Indeed, we get:

p(D | M) = p(xn | L1n—1, M)p(xn—l |x1:n—2>M) s p(xl |M)

such as

n

1 1
ﬁlOgP(D | M) = n Zlogp(xi | T1:4-1, M) = Epo[logpM(X | D)]

i=1

I.C. Bayesian Information Criterion

The Bayesian score is approximated by the BIC:
K
logp(D | M) = logpy, (D) — 5 log(n) + O(1)

where p; (D) is the data’s distribution when the parameter is the maximum likelihood estimator
éMV, K is the number of parameters of the model and n the number of observations.

In the following section, we outline the proof of this resultin the case of an exponential family given
by p (x| 0) = exp ((6, ¢ (X)) — A(0)).
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I.D. LAPLACE’s method

p(D130) = [ [Tp(e:10)p(0) a0
/ exp (<9, n$> —nA (9)) p(0)do

(0. n¢) —nA(0) = (0,nd) —nAB) + (0 — 0, nd)

—n(0 —0)TVyA(0) —
+ R,

-~

(0 —6)"nV2A(0)(0 —0)

N | —

where R,, is a negligible rest.

But the maximum likelihood is the dual of the maximum entropy: max H (py) such that u(6) = ¢.

-~

p(d) =¢
p(D] M) =~ exp((8,n6) — nA®) x [ exp (—;(9 _ 0TS0 — 5)) p(0)d0
However:

1. the information of fisher is equal to £!

2. [exp (—; (0 — §)Tni (0 — §>)p(0) do ~ ¢ (Qﬁ)k -t

Thus:
1 k
logp (D | M) zlogpg(X)+§log (2m)

:logpg(X)Jrglog(? ; (( ) )

— log py (X) + ];log(27r)—];10g(n)+2l (‘i D

The main reason why presenting the BIC is that a theorem prove the consistency of the BIC. In other
words, when the number of observations is sufficient, thanks to this criterion we choose with a
probability that converges to 0, a model that satisfies:

My, € Argmax By, [log (py  (X; M))]

To bring a quick clarification about the notations used in this part (model selection), please read
below. The notation is a bit confusing (it was used for example in Bishop’s book, but is a bit sloppy).
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From the Bayesian perspective, we could treat the model choice asarandomvariable M. In the M,
vs. M, vs. M3 example, there are only 3 models, and thus M is a discrete variable with 3 possible
values (M = My, M = My or M = Ms).

Therefore, when we were writing quantities like the Bayes factor p(M; | D)/p(Ms | D), It really
meant p(M =M, | D)/p(M =M, | D). It did not mean that M and M, were two different random
variables which can take complicated values (someone asked what space M, was in and it seemed
very complicated - what is meant is just that M is an index in possible (few) models).

D was the data random variable as usual. The mixing of random variables (here M) vs. their pos-
sible values (M = 1,2 etc) in the same notation (like p(M; | D)) is usual but confusing; better to
use the explicit p(M = M, | D) notation to distinguish a value vs. a generic random variable. . ..

However, in general, M could be as complicated as we want. For example, it could be a vector of
hyper-parameters for the prior distributions. Or it could also have binary component indicating
the absence or presence of an edge in graphical model, etc. It does not have to just be an index. It
could even be a continuous objects !

Itis also fine to have infinite dimensional objects'. For example, consider the latent variable model:
xisobserved, # and aare latentvariables; and M decides the priorover a. l.e. suppose p(x |0, a, M) =
Multi(0,1),p(0 | a«, M) = Dir(0 | «),and p(ac| M) = M («) i.e. M ranges over possible distribu-
tions over the positive vector a. M here is quite a complicated object, but this is fine. ..

II. Example of model

I1.A. Bernoullivariable

Let’s consider random variables X; € {0, 1}. We'll assume that the X arei.i.d. conditionally to 6.
Then they follow a Bernoulli law:

p(z])=6"(1-0)""

I1.B. Priors

Let’s introduce the distribution Beta whose density on [0, 1] is

p(0;a, B) = °71(1—0)"

B(e, )

Where B(a, ) is a short-name of the Beta function:

-1 L
Va > 0,8 > 0, B (a, f) = / 6°=1 (1 — 0)°" do

0

And the Gamma function: oo
T (z) = / t" " exp (—t) dt
0

! This would be in the “non-parametric setting” - non-parametric = infinite dimensional.
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We can show that B («, ) is symmetric and satisfies:

()T (8)

Blah) =Tt

We choose as the prior distribution on  the Beta distribution:

p(0) o 60°71 (1 —6)"""

(1 -0t
Il.C. Aposteriori
_p@0)
But: ,
_pT 1z eail (1 — 9) -
p(l’,g) =0 (1 0) B(O&,B)
Hence:

grta—1 (1 . 6)1—3@4—5—1
B(a, )

p(0]z) o

prta=1(1 _¢ 1—z+p-1
pO)a) = 220
B(z+a,1—x+p5)

Thus, if instead of considering a unique variable , we observe an i.i.d. sample of data, the joint
distribution can be written as:

0ot (1—0) Lo —0)

=1

Let’s introduce:

n

]’C:ZZEZ'

i=1

Then we get:
Qk—l—a—l (1 . e)n*kJrﬁ*l

p(@|l’1,x2,7xn)_ B(k,_|_a n_k+/8)
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lll. Special case of the Beta distribution

We remind that:

0 ~ Beta (a, B)
Fora = 3 = 1, we get a uniform prior.
Fora = 3 > 1, we get a bell curve.

Fora = < 1,we geta U curve.

E[0] = 2%
_ af .« B 1
V0 = GpParsD = @ X @B X @FeD

Fora > 1and § > 1, we get the mode: _15.

In the case, let’s write D for the data:

epost_E[0|D]_a+ﬁ+n_ (a—|—5) X (a+5+n)+(a+5+”) ) n

We can see that the a posteriori expectation of the parameter is a convex combination of the maxi-
mum likelihood estimator and the prior expectation. It converges asymptotically to the maximum
likelihood estimator .

If we use a uniform prior distribution, E[6 | D] = %; Laplace proposed to correct the frequentist
estimator, it seemed odd to him that he was not defined in the absence of data. He proposed to
add two virtual observation (0 and 1) such that in the absence of data the estimator equals % This

correction is known as Laplace’s correction.

The variance of the a posteriori distribution decrease in % .

V[9|D]:(9M(1_0M)(a+;+n)

We have chosen a sharper distribution around 6,,, in the same way than in a frequentist approach,
the confidence intervals narrow around the estimator when the number of observations increase.

lll. A. Playful propriety

_Bk+an—k+p) T(a+k)I(B+n—kT(a+p)
p(xy, Ty ..., x,) = B d) = Tlat A tn)T ()T () (13.1)

Let’s use this well-known property of the Gamma function:

I'(n+1)=n!
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and Ve > —1,T (z+1) =2 (x)

such that
F'a+k)=(a+k—1)(a+k—2)...al (a)

let’s write o/l = (a4 1) ... (o + k — 1) and simplify the expression 13.1:

okl gin—h]
(a+ B

p($17x27"°7$n) -

We shall note the analogy with the Polya urn model: let us consider (« + [3) balls of colour: « are
black, 5 are white. When drawing a first black ball, the probability of the event is:

«

P<X1:1):a+6

After the drawing, we put back the ballin the urn and we add a ball of the same colour. Let’simagine
that we draw again a black ball then the probability of this event is:

6 o a+1
a+pf a+p+1

P(X;=1,X=1)=P(X;=1)P(Xa=1]|X;=1) =

However:
o B

PG =1X =0) = g X g

In more general case , we show by recurrence that the marginal probability of obtaining some se-
quence of colours by drawing from a Polya urn is exactly the marginal probability of obtaining the
same result from the marginal model, obtained by integrating on a priori theta. First, this show
that drawings from a Polya urn are exchangeable; Secondly, the mechanism of this type of urn,
and its exchangeability, we’ll be useful for the Gibbs sampling and for the same type of Bayesian
models.

lll. B. Conjugate priors

Let IF be a set. We assume that p (= | #) known, we deduce from that: p (6) € Fsuchthatp (6| z) €
F. We say that p (#) is conjugated to the model p (x| 9).

a. Exponential model

Let’s consider:

p(z|0) = exp((0,0(x)) — A(0))
p(0) = exp ((a,0) = 7A(0) — B(a,7))
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For p (x| @), 0 is the canonical parameter. For p (), « is the canonical parameter and 6 is the suffi-
cient statistic. Let us note that B do not stand for the Beta distribution.

p(0]z) ocp(x|0)p(0) ccexp ({0, ¢ (2)) — A(0) + (., 0) = TA(0) = B(a, 7))

Let us define:

Then:
p(0|x;) cexp((,a+ ¢ (x;)) —(T+1)A0) — B(a+ ¢ (x;), 7+ 1))

p 0|z, z9,...,2,) o<exp(<6,a—|—n$>—(T+n)A(9)—B<a+n$,T+n))

p(T1, T, ..., Ty,) ocexp(B(a,T)—B(a—i—na,T—I—n))

Since the family is an exponential one,

Vpost:Ew'D]:VQB(a+n$77+n>

O 4p results from:
Vop (0| x1,29,...,2,) =0

o+ 1B = (7 +n) VoA () = (7 +n) p(0)

Thus we get iy ap = p (6) in the previous equation. Consequently:

a+n$_a T n —

Haap = T+n T T+n T+n

b. Univariate Gaussian

i. With and a priori on ;, but not on o

p(zlpo?) = L exp <—1($_M) )

V2mo? 2 o?
1 1 (1= po)’
2\ _
p(“"m”)‘me@(‘g 7

Thus:
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p(D|,u,a2) :p(acl,xg,...,acn|u,02)

p(u|D)=p(p|z, 2, ..., 20)

. (_1 ((u ;;@o)g +§; (z 0—2u)2>>

2

(% = 2pp0 + pd & p? — 2ux; + o
:eXp( (u Hio iy S0 20 ;

2
T i—1

1 [
el o (35)
i=1

Where:
1 n

Thus:

And:

Indeed, the variance decreases in %
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ii. Withana prioriono?butnotony We getp (c?) as an Inverse Gamma form.

iii. With an a priorion ;. and o> Gaussian a priori on x and y, Inverse Gamma a priori on 2.
Please refer to the chapter 9 of the course handout (Jordan’s polycopié).

IV. A posteriori Maximum (MAP)

Onap = argmgxxp(@ |21, 20, ..., 2p)
- argmg‘xp(xlyx% <oy T | 9)])(9)

Because, with the Bayes rule:

p(xy,z2,...,2,]0)p(0)
p ()

p(0|x1,29,...,2,) =

The a posteriori maximum is not really Bayesian, it’s rather a slight modification brought to the
frequentist estimator.

IV.A. Predictive probability

In the Bayesian paradigm, the probability of a future observation =* will be estimated by the Pre-
dictive probability:

p(x*| D) =p(z" |21, 29,...,2,)
= [p@ 10)p (@21, 22, .. ) d6

p(0|x1,29,...,2,) c<p(x,|0)p(x1|0)p(22]0)...p(x0_1]|6)p(0)

< p(x,|0)p (0|21, 29, .., 20_1)D(T1, 22, ..., Tp_1)
p(T1,%2, ..., Ty 1)
p(xy, o, ..., xp)

o p(x,|0)p (0| x1,22,...,Tp_1)

A sequential calculus is possible since:

n 6 6 9 gy dn—
p(Tn |z, 29, ..., Tpq)

Vocabulary:
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e a prioriinformation: p (0 | x1, 22, ..., Tn_1)
e likelihood: p (x, | 0)
e a posteriori information: p (6 | x1, za, ..., x,)

pn ) = [TTp(10)p(0)d

V. Naive Bayes

V.A. Introduction

Remarque: Contrary to its name, “Naive Bayes” is not a Bayesian method.

Let’s Consider the following problem of classification z € X? — y € {1,2,..., M }.

Here, x = (z1,29,...,1,) is a vector of descriptors (or features): Vi € {1,2,...,p},z; € X, with
X={1,2,..., K} (or X =R).

Goal: Learnp (y | x).
A very naive method will trigger off a combinatorial explosion: § € RX",

Bayes formula gets us:
p(z|y)p(y)
pylz)=——"+<"
(y]z) o ()
The Naive Bayes method consistsin assuming that the features z; are all conditionally independent

from the class, hence:
p

p(xly) =1Ip(ily)

Then, the Bayes formula gives us:

plylx) =

We consider the case where the features take discrete values. Consequently the new graphical
model contains only discrete random variables. Then, we can write a discrete model as an expo-
nential family. Indeed we can write:

logp(zi =kly=Fk)=0(x;=ky=k)Ouw

and

MVA 2019/2020 Probabilistic Graphical Models Page 107 of 122



CHAPTER 13 - MODEL SELECTION

logp(y=k)=0(y=FK)0k

We can see that the dummy functions 6(z; = k,y = k') and 6(y = k') are the sufficient statistics of
the joint distribution model for y and the variables x;, where 6,1 and 6, are canonical parameters.
Thus , we can write:

logp(y, L1y - 7%) = Z 5(%’ =k,y= k/)ez’kk’ + Z5(y = k,)ek’ - A((eikk’)i,k,k’y (ek’>k’)
ik, k! K

Where A((Oixx )ik i (O i) is the log-partition function.

We have rewritten the joint distribution model of (y, z1, ..., x,) as an exponential family. Given
that the maximum of likelihood estimator of an exponential family, where the canonical parame-
ters are not combined, is also the maximum entropy estimator; as seen in a previous course and
provided that the statistical moments of the sufficient statistics equal their empirical moments.

Thus, if we introduce
Nirw = #{(z5,y) = (k, K')}
N =" Niw,

ik’

The maximum likelihood estimator must satisfy the moment constraints

ZI;: Nt Nikk
~ :k/:z, et Al’i:k’ :k/: ikk’! ’
Ply=k)="F P v =F) =N -

k//

which define them completely.

Then, we can write the estimators of the canonical parameters as:

-~

O =logp(zi=k|y=k) et Oy=logp(y=F).

However, our goal is to obtain a classification model, that is to say, a model of only the conditional
probability law. From the approximated generative model and applying the Bayes rule we can get:

=

p
logp(y =K' |z) =) logp(z; |y =k) +1logp(y =Fk) —log > (ﬁ(y =k
k/

i=1

oty =)

=1

We can re write the conditional model as an exponential family

logp(y|z) =Y 0(zi=k,y=k)0uw +>_ 6y =K)0p —logp(z)
k/

ik’
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Its sufficient statistics and canonical parameters are equal to those of the generative model, but
seen as functions of the random variable y, given that z is fixed (we could write ¢, ; . 1 (y) = §(x; =
k,y = k')). As for the log-partition function, it is now equal to log p(x).

Warning: 0,11 is the maximum likelihood estimator in the generative model which, usually, is not
equal to the maximum likelihood estimator in the conditional model.

V.B. Advantages and Drawbacks

Advantages:

e Doablein line.
e Computationally tractable solution.

Drawbacks:

e Generative: generative models produce good estimator whenever the model is “true”, or in
statistical words well specified, which means that the process that generate the real data in-
duce a distribution equal to the one of the generative model. When the model is not well
specified (which is the most common case) we’d better use a discriminative method.

V.C. Discriminative method

The problem that we have considered in the previous section is the generative model for classifi-
cation in K classes. How to learn, in a discriminatory way, a classifier in K classes? Is it possible to
use an exponential family?

We have already seen the logistic regression for 2 classes classification:
. exp (wa)
p(y_ |x)_1+exp(wa)

Let’s study the K-multiclass logistic regression:

exXp (Z?:l 521 5 (.ZUZ = kf) Qlkk/)
2%:1 exp (Zle ZkK:1 o (z; =k) eikk”)

— exp (i S8 (2 = k) e — log ( > e (i 5= b 9““)))

i=1 k=1 k'"'=1 i=1 k=1

~exp (9%@ (z) — log ( % exp (QEW (:E))))

k=1
e (0o )
St oxp (0.6 (x))

ply=FK|z)=
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Although we have built the model from different staring consideration, the resulting modelling
(that is the set of possible distribution) is of the same exponential family than the Naive Bayes
model.

Nonetheless, the fitted model in a discriminatory approach will be different from the one fitted in a
generative approach: the fitting of the K-multiclass logistic regression results from the maximisa-
tion of the likelihood of the classes y/) of a set of learning, given that 2() are fixed. In other words,
the fitting is obtained by computing the maximum likelihood estimator in the conditional model.
Unlike what happens in the generative model, the estimator can’t be obtained in a analytical form
and the learning requires solving a numerical optimisation problem.
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I. Review on probabilities

In this section we recall some basic notations and properties of random variables.

The probability that a random variable X takes the value z is denoted p(X =
x). In this document, we simply write p(X) to denote a distribution over the random variable
X, or p(z) to denote the distribution evaluated for the particular value z. It is similar for more
variables.

Fundamental rules Fortwo random variables X, Y we have

e Sumrule:
p(X)=> p(X)Y)
Y
e Productrule:
p(X,Y) =p(Y | X)p(X)

e BAYES formula?:

_ p(Y [ X)p(X)

I.A. Jointdistributions

Let X1, X5, ..., X,, be random variables with joint distribution P(X; = 21, Xy = z9,..., X, =
z,) = px(x1,...,2,) = p(x) where x stands for (x1, ..., z,).

Given A C [1,n], we denote the marginal distribution of x4 by:

p(ra) = plea, xac)

T AcC
With this notation, we can write the conditional distribution as:
p(za, Tac)
p(ra|lxs) =——"""
(4|7 ac) e
We also recall the so-called "chain rule" stating:

p(z) = p(x1)p(@2 | 21)p(23 | 21, T2) .. p(T0 | 15 -, T 1)
Znote that BAvEs formula is not a Bayesian formula in the sense of Bayesian statistics
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I.B. Independence and conditional independence

Let A, B, and C be disjoint subsets of [1, n]. We will say that X 4 is (marginally) independent of X
and write X 4l Xpif

V(za,2B), p(ra,zp)=p(rs)p(Tp) or equivalently p(zg) > 0= p(xa|z) =p(xas)
Similarly we will say that X 4 is independent from Xz conditionally on X¢ (or given X) and we
will write XA_U_XB | XC if

Vea,zp,2c, p(re) > 0= p(za,zp|zc) =plal|zc)p(zp|zc)

or equivalently if

Vaa,vp,20, p(TB,2c) > 0= p(ws|TB,70) = D(Ta|7C)
More generally we will say that the (X 4, )1<;<x are mutually independent if

k

Vea,....,xa, D(Ta,...,Ta,)= Hp(xAi)
i=1

and that they are mutually independent conditionally on X« (or given X¢) if

k
Voa,....,xa,,2c, p(re)>0=p(xa,...,za,|2c)= Hp(xAi zc)

=1

REMARKI..2. Note that the conditional probability p(z 4, x5 | z¢) is the probability distribution
over (X4, Xp) if X¢ is known to be equal to z¢. In practice, it means that if the value of X is
observed (e.g. via a measurement) then the distribution over (X4, Xg) is p(za, 25 | z¢). The
conditional independence statement X 4 Il X5 | X should therefore be interpreted as "when
the value of X is observed (or given), X 4 and X are independent".

REMARK |..3. [PAIRWISE INDEPENDENCE VS MUTUAL INDEPENDENCE]

Consider a collection of random variables (X, ..., X,,). We say that these variables are pairwise
independent if X, I X forall1 < i < j < n. Note that this is different than assuming that
X1, ..., X, are mutually (or jointly or globally) independent. A standard counter-example is as

follows: given two variables X, Y that are independent coin flips define Z via the XOR function
@ withZ = X @Y. Then, the three random variables X, Y, Z are pairwise independent, but not
mutually independent (exercise). The notations presented for pairwise independence could be
generalized to collections of variables that are mutually independent.

Three facts about conditional independence

e Itispossibletorepeatthe conditionalvariable: X Il (Y, Z) | Z, Wisthesameas (X, Z) 1Y | Z, W.
The repetition is redundant but may be convenient notation.

e We have decomposition: if X_Il (Y, Z) | W then X 1LY |Wand X 1L Z | W.

e The chain rule applies to conditional distributions:

p(z,y|2) =plx|y,2)p(y]2)
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Independent and identically distributed A set of random variables is independent and identi-
cally distributed (i.i.d.) if each random variable has the same probability distribution as the others
and all are mutually independent.

Il. Review on LAGRANGE duality

Lagrangian Consider the following convex optimization problem:

mingey f(x)
subjectto Ax =1b

where f is a convex function, X C R? is a convex set included in the domain® of f, A € M,,, and
b e R".

The Lagrangian associated with this optimization problem is defined as

L: XxR" — R
z, N > f(x) + AT (Ax —b)

The vector ) is called the LAGRANGE multiplier vector.

Lagrangedualfunction TheLAGRANGEdualfunctionisdefinedasg: A € R" — min, ¢y L(z, \).
The problem of maximizing g is known as the LAGRANGE dual problem.

max-min inequality Forany f: W x Z C R” x R™ — R, we have

Vw e W, f(w,z) <max f(w,z) = min f(w,z) < minmax f(w, 2)

2€Z wew weW zeZ

= maxmin f(w,2) < min max f(w, 2)

flz) ifAz =10
+o0o otherwise
min,cy maxy L(z, A). For the above equations we have:

Duality Itiseasytoshowthatmax, L(z, \) = { which givesusmin,cy f(x) =

max g(\) = max min L(z,\) < min max Lz, \) = min f(z)

This inequality says that the optimal value d* of the LAGRANGE dual problem always lower-bounds
the optimal value p* of the original problem. This property is called the weak duality. If the equality
d* = p* holds, then we say that the strong duality holds. Strong duality means that the order of
the minimization over z € X and the maximization over A can be switched without affecting the
result.

3the domain of a function is the set on which the function is well-defined and finite
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SLATER’s constraint qualification lemma Ifthere existsan zintherelative interiorof YN{ Az = b}
then strong duality holds.

Note that all the above notions and results are stated for the fixed problem introduced above. For
a more general problem and more details about LAGRANGE duality, please refer to [?] (chapter 5).

Ill. Review on differentials
I1l.A. Generalities

Differentiable function A function f is differentiable at z € R? if there exists a linear form df,
such that:
VheRY, f(z+h) = f(z) + df.(h) + o||h])

SinceR¢isa HILBERT space, we know in that case that there exists g € R?suchthatdf,(h) = (g | h).
We call g the gradient of f and denote itby V f(z).

EXAMPLE III. .1.

o If f: 2+ a'x+ bthenwe have f(z + h) = f(x) + a'h and thus f is differentiable and
Vf(x)=a.
o If f: 2 — 127 Az then we have:

F@+h) — f(z) = ;(x BT Al + h) — ;xTA:U _ ;@TAh + 1T Az) + o)

The gradientisthen Vf(z) = $(Az + ATx).

Composition of differentials If f and g are differentiable respectively at g(z) and z, then fogis
differentiable at x and:

d(f © 9)a(h) = dfga)(dga(h)) = dfg(a) © dga(h)

lll. B. Some practical differentials

o Letf:S;T(R) — R, A — log(det A). We have for H € S; *(R):
log(det(A+H)) = log(det(A2 (I;+A~2 HA“2)A 7)) = log(det A)+log(det(I;+A"2 HA 7))

AsH = A sHA = is symmetric, it it diagonalizable and if (\;)1<;<q are its eigenvalues:
d d
log(det(Iy+ H)) = Y log(1+ ;) = Y\ + o ||| ) = Te(H) + o || H]|)
i=1 i=1

Thus f is differentiable at A and:
dfa(H) = Tr(H) = Tr(HA™Y)  Vf(A) =A""
o Let f: A+ Tr(AA)where Ais a fixed symmetric matrix. We have:
J(A+ H) = f(A) = Te(HA)
Thus f is differentiableis V f(A) = A.
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IV. Optimization methods

IV.A. First-order methods

Let f : R? — R be the convex C! function that we want to minimize. A descent direction at point
zisavectordsuchthat (d | V f(z)) < 0. The minimization of f can be done by applying a descent
algorithm, which iteratively takes a step in a descent direction, leading to an iterative scheme of
the form

:L't+1 — Zlft + Etdt

where ! is the stepsize. The direction d' is often chosen as the opposite of the gradient of f at point

xt:

& =~V (')

There are several choices for t:

e aconstant step: e’ = ¢. But the scheme does not necessarily converge,

e adecreasing step size: ' %With Seel = 4ooand Y, (e")? < +oo. Inthat case the scheme
is guaranteed to converge.

e one can determine ¢’ by doing a line search which tries to find min.~( f(z' + ed"):

- either exactly but this is costly and rather useless in many situations,

- or approximately (ARM1JO line search). This is a very effective method.

IV.B. Second-order methods

Assume now that f is a C? function. We write the second-order TAyLOR-expansion of f at a point

Flr) = F) + (@ =) V) + o =) THFE @ o) ol o — o)

gt(z)
We know that a local optimum x* is reached when

Vfz*)=0 and H(f(z")) >0

In order to solve such a problem, we are going to use the NEwTON’s method. If f is a convex func-

tion, then Vg, (z) = Vf(2') + Hf(z")(x — x*) and we only need to find z* so that Vg, (z) = 0,

i.e.wesetz!tt =27 — (H f(2)) 'V f(a!). If the Hessian matrix is not invertible, we can regularize
e e . T2 .

the problem and minimize g,(x) + M|z — = ' ||” instead.

In general the previous update, called the pure NEWTON step does not lead to a convergent algo-
rithm even if the function is convex!

In general it is necessary to use the so-called damped NEwWTON method, to obtain a convergent
algorithm which consists in doing the following iterations:

2 =t — e (H f(2") 'V f(a')
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where ¢t is set with the ARMIJO line search.

This method may be computationally costly in high dimension because of the inverse of the hes-
sian matrix that needs to be computed at each iteration. For some functions, however, the pure
NEWTON’s method does converge. This is the case for logistic regression.

In the context of non-convex optimization, the situation is more complicated because the Hessian
can have negative eigenvalues. In that case, so-called trust region methods are typically used.

V. Review on graphs

DEFINITION V. .1. [GRAPH]
A graph is a pair G = (V, E) comprising a set V' of vertices or nodes together with a set £ C
V' x V of edges or arcs, which are 2-element subsets of V.

| REMARK V. .1. In this course we only consider graphs without self-loop.

V.A. Undirected graphs

DEFINITION V. .2. [UNDIRECTED GRAPH]
G = (V, E) is an undirected graph if forallu # v € V x V we have:

(u,v) € E <= (v,u) € E

Figure 2: Two different ways to represent an undirected graph

DEFINITION V. .3. [NEIGHBOUR]
We define NV (u), the set of the neighbours of u, as

Nw)={veV]|(v,u) € E}

Figure 3: A vertex and its neighbours

DEFINITION V. .4. [CLIQUE]
A totally connected subset of vertices or a singleton is called a clique.
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Figure 4: Aclique

DEFINITION V. .5. [MAXIMAL CLIQUE]
A maximal clique C'is a clique which is maximal for the inclusion order, i.e. C'is a clique and for
allv ¢ C,C C {v}isnotaclique.

Figure 5: A maximal clique

DEFINITION V. .6. [PATH]
A path is a sequence of connected vertices that are globally distinct.

u
\Y

Figure 6: A path from uto v

DEFINITION V. .7. [CYCLE]
A cycle is a sequence of vertices (vy, . . . , vx) such that:

® Uy = Vg,
® \V/j S [[O,l{f - ].]], (vj,vj+1) S E,
o Vi,j € [0,k],vi = v; = {1,j} = {0, k}.

DEFINITION V. .8. Let A, B, C be distinct subsets of V. C separates A andB if all paths from A
to B go through C.

DEFINITION V. .9. [CONNECTED COMPONENT]
A connected component is a subgraph induced by the equivalence class of the relation uRuv if
and only if exists a path from wu to v.
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C O

Figure 7: C separates Aand B

Figure 8: A graph with 2 connected components

In this course we will consider there is only one connected component. Otherwise we can deal with
them independently.

V.B. Oriented graphs

DEFINITION V. .10. [PARENT, CHILDREN, ANCESTOR, DESCENDANT]
visaparent of uif (v,u) € E,

vis a children of u if (u,v) € E,

v is an ancestor of u if there exists a path from u to v,
v is a descendant of w if there exists a path from u to v.

=

Figure 9: An oriented graph with a cycle

DEFINITION V. .11. [DIRECTED ACYCLIC GRAPH]
A directed acyclic graph (DAG) is a directed graph without any cycle.

DEFINITION V. .12. [TOPOLOGICAL ORDER]
Let G = (V, E) a graph withn = card(V') < +oc. I is a topological order if

e [isabijection from [1,n] toV,
e Ifuisaparentofu,thenI(u) < I(v).
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| PropPosiITIONV..1. G = (V, E) has a topological order if and only if G is a DAG.

PrROOF The direct implication is easy. Reciprocally, use a depth-first search. O

VI. Review on MARKOV chains

In this annex we assume that we work with random variables taking values in a set X with |X| =
K < 4o00. However K is typically very large since it corresponds to all the configurations that the
set of variables of a graphical model can take.

Consider (X );cn @ sequence of random variables.

DEFINITION VI..1. [TIME HOMOGENOUS MARKOV CHAIN]
(X})ten is a time homogenous MARKoV chain if

Vi>0, V(r,y) e X,p(Xpp1=y|Xi=2,Xi1,...,X0) =p(Xps1 =y | Xy =2) = S(x,y)

S is called transition matrix of the MARKOV chain.

ProposITIONVI..1. If K < +oo, then S is a stochastic matrix:

Ve,ye X, S(z,y)>0 and S1=1

DEFINITION VI. .2. [STATIONARY DISTRIBUTION]
The distribution 7 on X’ is stationary if

S'm=m  orequivalenty Vye X, w(y)= > m(z)S(z,y)
TEX

If p(X7,) = 7 with 7 a stationary distribution of S, then we have p(X;) = = forallt > Tj.

THEOREM VI..2. [PERRON-FROBENIUS]
Every stochastic matrix S has at least one stationary distribution.

ProprosiITION VI. .3. One has:

VmGN,Vm,y, Sm<m7y):p(Xt+m:y|Xt:x>

DEFINITION VI. .3. [IRREDUCIBLE MARKOV CHAIN]
A MARKoOV chain is irreducible if

Ve,y e X, dImeN"|S"(z,y) >0

DEFINITION VI. .4. [PERIOD OF A STATE]
The greatest common divider of the elements in the set {m > 0| S™(z,z) > 0} is called the
period of a state. When the period is equal to 1 the state is said to be aperiodic.
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DEFINITION VI. .5. [APERIODIC MARKOV CHAIN]
If all the states of a MARKOV chain are aperiodic the chain is said to be aperiodic.

DEFINITION VI. .6. [REGULAR MARKOV CHAIN]
A MARKov chain is regular if S(z,y) > Oforallz,y € X.

| REMARK VI..1.  Aregular MARKOV chain is clearly irreducible aperiodic. The converse is not true.

ProposiTION VI. .4. If a MARKOV chain on a finite state space is irreducible and aperiodic, then
its transition matrix has a unique stationary distribution = and for any initial distribution q, on X,
if g = p(Xy), then g, T T

REMARKVI..2. Ifthe state spaceis not finite, an additional assumption is needed on the MARKOV
chain: it needs to be recurrent positive. We do not define this notion in this course.

We want to construct an irreducible aperiodic transition S whose stationary distribution is

w(r) = 5 [[velee)

ceC

DEFINITION VI. .7. [DETAILED BALANCE]
A MARKoV chain is reversible if exists a probability distribution 7 such that

Ve,ye X, w(x)S(x,y) = 7(y)S(y, x)
This equation is called the detailed balance equation and can be reformulated as

p(XH-l = y7Xt = I’) = p(XH-l = vat = y)

| ProposITION VI. .5. [f 7 satisfies detailed balance, then r is a stationary distribution.

PROOF Onehas 3>, v S(z,y)p(z) = X, p(y)S(y, x) = p(y) Xoca S(y, ) = p(y). O

VIl. SCHUR complement

Let us consider the block matrix M = é [L]> Our goal is to explicit the blocks of its inverse in
terms of the initial blocks A, L, U, R*.

We can block diagonalize M by premultiplying it by D and postmultiplying by G, where:
I 0 I —A7'L
D = (—RAl I) and G = <() 7 >

A 0
bMG = (o U—RA—1L>

Indeed:

4L stands for left, U for upper R for right
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and we denote by A this block diagonal matrix.

DEFINITION VII..1. [SCHUR COMPLEMENT]
The ScHur complement of M w.rt. Ais [M/4] = U — RA™'L.

By symmetry we obtain the SCHUR complement of M w.rt. U as [M ;] = A — LU 'R.

From the previous calculations we obtain

LEMMAVII..1. [DETERMINANT LEMMA]

det(M) = det(A) det([M/a]) = det(U) det([M,v/])

We also have the following result:

LEMMAVIL .2. [POSITIVITY LEMMA]
If M is symmetric then M =0 ifand only if A = 0 and [M 4] = 0.
PROOF If M is symmetricthen G = DT. Then

A=0and [M)4] =0 < Vr,2 Az >0
< Va,(D'2)"M(D"z) >0
— Yy,y My>0 as Dis nonsingular <= M =0

O

PROPOSITION VII. .3. [WOODBURY-SHERMAN-MORRISON FORMULA]
M is nonsingular if and only if A and [M 4] are. In this case, we have:

(M) =U + U 'R[Myy) ' LU

PROOF AsA~! = G- 'M~'D~! onehas M~! = GA~'D, from which we obtain:

wt (AT ATILM T RATY ATTL[M ]
o —[M/A]flRAfl [M/A}fl

Doing the same calculation with the decomposition associated to U, we obtain:

vl (Ml —U R[Mu) ™
— My LLUY UL 4+ U R[M ] LU

O

Auseful consequence of the SCHUR componentis to prove rigorously the following inversion lemma:

LEMMA VII. .4. [MATRIX INVERSION]
Let X € RP*™ Then for any X:

(T+XAXTX) =T - AX(T+ XXX X'
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In practice, we often want to invert matrix such as I + AX " X where X is a design matrix®> and we
usually have n > p. In that case, the inversion lemma replaces the problem of inverting a square
matrix of dimension n (complexity in O(n?)) by a less costly one of dimension p.

, I X A L
PROOF We can assume \ # 0. We consider M = (XT _il) = (R U)'
Then [M,;]™! = (I + AX " X). Using the WOODBURY-SHERMAN-MORRISON formula, it comes:
(M|t = A"+ A LM 4) ' RAT!

which gives us the result. [

5n is the number of samples and p the number of features
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