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Notations

In this report, we use the following notations:

Notation Description
d Euclidean distance
dH hyperbolic distance
dG graph distance, also known as the geodesic distance

B(u, r) the open ball of center u and radius r, for the Euclidean distance
BH(u, r) the open ball of center u and radius r, for the hyperbolic distance
An a.a.s. P(An) −→

n→+∞
1 (a.a.s means asymptotically almost surely)

X . Y Y stochastically dominatesX

In this report we use polar coordinates. The natural use of polar coordinates emerges from the gener-
ation of random hyperbolic graphs (see Definition 2.1). For two points u, v, we denote by θuv ∈ [0, π] the
(non oriented) rotation angle at the originO between u and v.

We will also use the following LANDAU notations:

f = o(g)⇐⇒∀k > 0,∃n0, ∀n ≥ n0, |f(n)| < k |g(n)|
f = O(g)⇐⇒∃k > 0,∃n0, ∀n ≥ n0, |f(n)| ≤ k |g(n)|
f = Θ(g)⇐⇒∃k1, k2 > 0,∃n0,∀n ≥ n0, k1 |g(n)| ≤ |f(n)| ≤ k2 |g(n)|
f = ω(g)⇐⇒∀k > 0,∃n0,∀n ≥ n0, |f(n)| ≥ k |g(n)|
f = Ω(g)⇐⇒∃k > 0,∀n0,∃n ≥ n0, |f(n)| ≥ k |g(n)|



1 Resume

1.1 English version

Under the supervision of Dieter Mitsche, I worked on random hyperbolic graphs at the J.A. DIEUDONNÉ
laboratory in Nice. This is a recent model of graphs (introduced in 2010) satisfying numerous properties
of complex networks that we can find in real networks such as social media (Facebook friendshipsmap,
. . . ) or the Internet graph (consisting of all the routers and theirs communications, see Paragraph 2.2.4).
The idea behind this model is to generate vertices in the hyperbolic plane and to connect them in a
similar ways as in geometric graphs, but using a hyperbolic distance. It is this underlying hyperbolic
geometry that allows to obtain naturally numerous properties of complex networks (power-law, small-
world phenomenon, sparsity, clustering, . . . ).

As the topic is recent, there are still many properties to prove, despite a significant research activity on
thismodel. I was interested in amodel of rumor spreading in randomhyperbolic graphs: the push & pull
model (see Paragraph 2.2.6). My objectivewas to find the average time needed to inform thewhole giant
componentof thegraph (the componentwith themost vertices). I havebeenhelped in this taskbyDieter
and one of his co-author, Marcos Kiwi, who is a researcher at the university of Chile and is interested by
similar questions.

Part 2of this report is a short introduction to randomhyperbolic graphs,withadescription the internship
topic. ThenPart 3 is divided into twoparts: the first onepresents simulations doneduring the internship,
while the other one proposes a theorical approach of the rumor spreading model.

1.2 French version

Sous la direction de Dieter Mitsche, j’ai travaillé sur des graphes aléatoires hyperboliques au laboratoire
J.A. DIEUDONNÉ de Nice. Il s’agit d’un modèle de graphes aléatoires récent (introduit en 2010) satis-
faisant de nombreuses propriétés des graphes que l’on peut obtenir sur des réseaux sociaux (graphe
des amitiés de Facebook, . . . ) ou même le graphe des routeurs/serveurs d’internet et leurs communica-
tions entre eux (voir Paragraphe 2.2.4). L’idée derrière cemodèle est de générer des points dans un plan
hyperbolique puis de les connecter similairement aux graphes géométriques mais en utilisant une dis-
tance hyperbolique. C’est cette géométrie hyperbolique qui permet de faire ressortir naturellement de
nombreuses propriétés des graphes dits complexes (graphes en loi de puissance, phénomène de petit
monde, faible densité, fort coe�icient de clustering).

Le sujet étant récent, il y a encorede trèsnombreusespropriétés à trouver etdémontrer,malgréune forte
activité de recherche sur ce modèle. Pour ma part, je me suis intéressé à un modèle de propagation
d’une rumeur dans ces graphes : le modèle push & pull (voir Paragraphe 2.2.6). Mon objectif était de
trouver le temps moyen nécessaire avant que tous les sommets de la composante géante du graphe (la
composante avec le plusde sommets) ne soient informés. J’ai été aidépour celaparmonmaitre de stage
ainsi que l’un de ses co-auteurs, Marcos Kiwi, qui est chercheur à l’université du Chili et s’intéresse à des
questions similaires.

Dans ce rapport, vous trouverez une courte introduction sur les graphes aléatoires hyperboliques ainsi
qu’une description du sujet (Partie 2). Puis la Partie 3 sera constituée d’une première section présentant
les simulations que j’ai réalisées durant ce stage, et d’une seconde portant sur notre approche théorique
dumodèle de propagation de rumeur.
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2 Context

2.1 Location and organisation of the intership

I did my internship in the J.A. DIEUDONNÉ laboratory of Nice. It is a university laboratory located in the
Valrose Park in the north of the city. I joined the probability and statistics team (about 30 researchers
and PhD students). More specifically, I was supervised by DieterMitsche. I alsoworkedwithMarcos Kiwi,
one of Dieter’s co-author, from the university of Chile. Marcos came to Nice for a week in July.

During the four months, I assisted many seminar talks, on the one hand talks about probabilistic or sta-
tistical research topics eachweek, and on the other hand thesis presentations of PhD studentswhowere
practicing their oral skills before the real defense.

2.2 Internship topic

During this internship, I studied random hyperbolic graphs. The objective was to find some properties
about this new kind of complex random graphs introduced in [KPK+10] by Krioukov et al. in 2010.

In this section, I first introduce randomhyperbolic graphs, then I recall somesignificant results and finally
I present the problem I was interested in.

2.2.1 Complex networks

Complex networks refer to large networks satisfying the following fundamental properties :

1. they are scale free: their degree distribution follows a power law distribution for a big range of
degrees, that is to say that for an important number of k, card({nodes of degree k}) ∼ Ck−β for
some constantC and an exponent β.

2. they have a high clustering coe�icient: two nodes of the network that have a common neighbour
are somewhat more likely to be connected with each other,

3. they are sparse (or diluted): the number of edges is proportional to the number of nodes,
4. they exhibit the small world phenomenon: almost all pairs of vertices that are in the same compo-
nent are within a short distance from each other.

Complex networks have been studied a lot for about 20 years asmost of large networks emerging in the
realworld (socialmedia, internet, biology, . . . ) are complexnetworks. Their studyhasmanyapplications,
and finding models of graphs satisfying the four above points is a challenging problem. This is the case
of random hyperbolic graphs introduced by Krioukov et al.

2.2.2 Random hyperbolic graphs

Random hyperbolic graphs are a generalisation of random geometric graphs in hyperbolic spaces. In-
deed, random geometric graphs have nodes uniformly generated in some part of the Euclidean space
and two vertices are connected by an edge if and only if the euclidian distance between both is less or
equal to a fixed threshold which is a parameter of the model. Edges of random hyperbolic graphs are
following the same rule, except that the distance used to generate edges is the hyperbolic distance dH in
a hyperbolic space of negative curvature.
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2.2 Internship topic

DEFINITION 2.1. [RANDOM HYPERBOLIC GRAPH]
Let α, ν > 0 and n ∈ N. Fixing R := 2 log(n/ν), we say that a graph Gα, ν(n) := (V,E) (with
|V | = n) is a random hyperbolic graph if:

– the vertices {vi}1≤i≤n of V are independently generated inB(O,R)with densitya

f : R+ × [0, 2π[ −→ R+
(r, θ) 7−→ 1

2πρ(r) where ρ(r) = α sinh(αr)
cosh(αR)− 11[0,R[(r)

– the edge set E is entirely determined by the positions of the vertices, that is to say that two
vertices u, v ∈ V are adjacents if and only if dH(u, v) ≤ R:

{u, v} ∈ E ⇐⇒ dH(u, v) ≤ R (1)

ait means that r and θ are independent, r generated with density ρ and θ uniformly chosen in [0, 2π[
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RHG, (alpha, nu, n) = (0.7, 1, 500)

Figure 2.1: G0.7, 1(500). The solid (resp. segmented) circle is the boundary ofB(O,R) (resp. B(O,R/2)).

REMARK 2.1.

– It is equivalent to say that the vertices are uniformly and independently generated in the ball
BH(O,R) of the hyperbolic space of curvatureK = −α2.

– The definition of the hyperbolic distance dH can be found in a geometry course. This is the
distance of the hyperbolic space of curvature K = −1. Nevertheless, we can use this fun-
damental hyperbolic law of cosinus that allows to check easily if condition (1) is satisfied or
not: if u = (ru, θu) and v = (rv, θv), then

cosh dH(u, v) = cosh ru cosh rv − sinh ru sinh rv cos θuv (2)

– In their original paper, Krioukov et al. introduced amore generalmodelwith another parame-
ter, called the temperature:it is a positive constant that controls the probability of connectiv-
ity: twonodesathyperbolic distancedare connectedbyanedgewithprobability1/(1+e d−R2T ).
We consider here the 0-temperature case which is the most studied case, as it is the easiest.
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2.2 Internship topic
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Figure 2.2: Some random hyperbolic graphs with di�erent parameters α, ν. Note that the radii decrease
in each new line, as ν increases.
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2.2 Internship topic

2.2.3 Role of α and ν

In Figure 2.2, we can see examples of random hyperbolic graphs for di�erent values of α and ν.
We observe the role of the two parameters :

– α controls the repartition of vertices near to the boundary : when α increases, vertices tend to
accumulate at the boundary.

– ν controls the density of the graph, as the radius R depends on ν: when ν increases, the radius
decreases and so the graph is more dense.

We will see below that α and ν control important properties of the model.

2.2.4 An example: the internet graph

In 2010, Boguñá, Papadopoulos and Krioukov showed that a famous complex network of our real world
could be seen as a hyperbolic graph. They published a famous article in Nature Communications (see
[BPK10]) concerning the Internet network: they considered the graph whose vertices are all the Internet
routers (and also more generally all "Autonomous Systems" in the article), and with an edge between
two connected routers.
They realised a maximum likelihood estimation to obtain the graph of Figure 2.3:

Figure 2.3: The hyperbolic map of the Internet. The size of nodes is proportional to the logarithm of
their degrees. For the sake of clarity, only nodes with degree above 3 are shown.

There are 23752 vertices and 58416 links. Maximum likelihood estimation gives α = 0.55,R = 27 and a
temperature T = 0.69.
Nevertheless, we can raise doubts about the model, as many countries seem to be misplaced (see for
instance the position of some European countries like Greece and Poland, or also India).
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2.2 Internship topic

2.2.5 Known results

As random hyperbolic graphs have been introduced recently, there are many open questions about
them. However, this is an active research field, many papers have been published in the last years with
important results. First, it has been shown that randomhyperbolic graphs satisfy the properties of com-
plex networks introduced in Paragraph 2.2.1.

In the original paper of Krioukov et al., it has been shown that random hyperbolic graphs are scale-free
(see point 1). They also found the exponent of the power-law distribution:

THEOREM 2.1. [RHG ARE SCALE-FREE] [KPK+10, Section IV]
Let α, ν > 0. Then Gα, ν(n) admits a power-law degree distribution with exponent

β =
{

2α + 1 if α ≥ 1
2

2 if α ≤ 1
2

We see that α controls the exponent of the power-law. This is not a surprise, as α controls ρ and it is
harder to be connected toother pointswhen youare close to theboundary ofB(O,R). Note in particular
that the exponent belongs to [2, 3]when α ≤ 1 (we will see later that the case α > 1 is less interesting).
In [GPP12], Gugelmann et al. then showed that the expected degree distribution follows a power-law
distribution at all scales, up to the maximum degree. By summing the degrees, one can show that the
number of edges isO(n), which gives the sparsity of the model (point 3). In the same paper, they also
showed that random hyperbolic graphs have a high clustering coe�icient (point 2).

Then, Kiwi & Mitsche proved in [KM14] that the diameter of random hyperbolic graphs was atmost poly-
logarithmic, which in a sensemeans that randomhyperbolic graphs exhibit a small-world phenomenon
(point 4):

THEOREM 2.2. [DIAMETER OF RANDOM HYPERBOLIC GRAPHS] [KM14, Theorems 12]
Letα ∈]1/2, 1[andν > 0. A.a.s., any twoverticesuandv belonging to the sameconnectedcomponent
satisfy

dG(u, v) = O(logC0+1+o(1)(n))

whereC0 = 4
1−1.5α+α2/2 .

Friedrich and Krohmer improved the result in [FK15]1.

In addition, I have to mention some other results. The first one is about the size of the giant component
(the largest connected component of the graph):

THEOREM 2.3. [SIZE OF THE GIANT COMPONENT] [BFM15, Theorems 1.4 and 1.5]
Let α, ν > 0. Denote byC1 the giant component of Gα, ν(n), the following hold:

(i) if α > 1, then |C1| < 8R2 log3(R)n1/α a.a.s.,
(ii) if α < 1 then there exists c = c(α, ν) such that |C1| > cn a.a.s.,
(iii) if α = 1, there exist constants π8 ≤ ν0 ≤ ν1 ≤ 20π such that the following hold:

– if ν < ν0, then |C1| ≤ n
log(log(R)) a.a.s.,

– if ν > ν1, then |C1| ≥ n
610 a.a.s..

When α < 1, the size of the giant component is at least linear, which means a significant proportion of
nodes are in the same component. When α > 1, the size of the component is sub-linear, thus the study

1the paper of Friedrich and Krohmer however contained a mistake, and this was then corrected by Müller and Staps in
[MS17]
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2.2 Internship topic

of rumor spreading in the graphdoes not reallymake sense. There is a phase transition atα = 1 atwhich
the behaviour depends on ν.
In [KM17], Kiwi and Mitsche then showed that the second component is always sub-linear.

Another result is about the probability of connectivity:

THEOREM 2.4. [PROBABILITY OF CONNECTIVITY] [BFM16, Theorem 1.2]
Let α, ν > 0. Then the following hold :

(i) if α > 1/2 then Gα, ν(n) is a.a.s. disconnected,
(ii) if α < 1/2 then Gα, ν(n) is a.a.s. connected,
(iii) if α = 1/2 then limn→+∞ P(Gα, ν(n) is connected) = f(ν)where f : R+ −→]0, 1] is a continu-

ous function strictly increasing on [0, π] and satisfying f| [π,+∞[ = 1 and f(0+) = 0.

Whenα < 1/2, we have a unique componentwhile it is not the case forα > 1/2. At the phase transition,
when α = 1/2, the behaviour depends on ν.

2.2.6 Mywork

I started my internship reading a lot of articles in order to know better the random hyperbolic graph
model and some techniques used in the demonstration of important results. Then I made some simula-
tions. The goalwas tounderstandhow togenerate randomhyperbolic graphswith an important number
of vertices and to verify some of the main properties I found in the articles I read.

A�er this necessary work, I studied a rumor spreading model: the push & pull model.

The push & pull model We consider a classic model of propagation in the giant component of the
graph. Starting by randomly choosing a vertex which is the first informed at time t = 0, at each time two
processes happen simultaneously and independently :

– a push : each informed vertex chooses one of its neighbours uniformly and transmits him the in-
formation if it did not already have it,

– a pull : each non-informed vertex chooses one of its neighbours uniformly. It receives the informa-
tion if this neighbour already has it.

Our goal was to find the average time needed to inform the whole giant component of Gα, ν(n). As we
want to propagate the rumor to a significant number of vertices, we consider the case α < 1, owing to
Theorem 2.3. In practice, we will work with α ∈]1/2, 1[ as when α ≤ 1/2, there are two many vertices
near to the center of the graph and thus the spread seems to be too fast and hard to control.

My first work was to implement simulations of the process. The goal was to understand how the rumor
propagates in the graph. I also worked on the theoretical problem, trying to use what I observed in the
simulations. In Figure 2.4, we can see an instance of one push&pull simulation. Wewill explain in details
what we see in Paragraph 3.1.4.

I worked and shared a lot with Dieter and Marcos on the mathematical approach and conducted simu-
lations onmy own at the same time.
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2.2 Internship topic
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Figure 2.4: A push & pull rumor spreading in G0.9,1(1000). Only vertices of the giant component are
represented.
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3 Report

This part contains what I did during this internship. It is composed of two sections: we begin with some
simulations done with Python. Starting by the creation of a fast random hyperbolic graph generator, we
then show some of the fundamental properties introduced in the last part. We also did simulations for
the push & pull model, in order to better understand what happens in the graph. In the second section
we present the theoretical work we started to work on. We will discuss about the push & pull rumor
spreading in simplified models.

3.1 Simulations

A�er the reading of some articles, I started my internship by doing some simulations. It was necessary
to understand better the model and its underlying hyperbolic geometry. Codes and simulation videos
may be found at these links:

https://github.com/Tooine/RHG
https://www.youtube.com/playlist?list=PLVYgKw0bePxtkUTFZPzGhMyOiijz-BXkg

3.1.1 Balls

To begin with, let us have a look at the form of balls in the hyperbolic plane. Fixing R > 0, and u =
(ru, θu), we want to representBH(u,R) = {v | dH(u, v) ≤ R}. We recall equation (2) :

cosh dH(u, v) = cosh ru cosh rv − sinh ru sinh rv cos θuv

Note that dH is rotation-invariant, so we just have to consider the case θu = 0.
In the case where u is the originO, this equation directly gives that BH(O,R) = B(O,R). Otherwise we
do not have this equality. Simulations give us the form of balls:
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Figure 3.1: BH(u, 10).

Recall that two vertices u, v ∈ V are adjacent if and only if dH(u, v) ≤ R. It is now easier to see which
vertices are connected to a fixed vertex: a vertex with a small radial coordinate is almost connected to
the whole space, while if it has a large radius, connected points will have a close angle or a really small
radius (see Figure 3.2).
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3.1 Simulations
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Figure 3.2: G0.7, 1(1000). For two vertices (in yellow), we highlight their connections and the hyperbolic
ball of radiusR around them. Observe that the vertex with green neighbours has more connections

than the one with red neighbours, as its radius is smaller.

3.1.2 RHG generator

In order to check some properties with simulations – and also to find conjectures –, we need a quick
random hyperbolic graph generator. As we have results for an asymptotical number of vertices, this
generator has to be fast enough for big values of n.

Algorithm 1: greedy generator of Gα, ν(n)
Input : α, ν, n
Output: V ,E

1 R← 2 log(n/ν)
// V ordered list of vertices,E set of edges

2 V ← []
3 E ← {}
// Generation of V

4 for i ∈ [[1, n]]:
5 r ← random radius with density ρ = ρα,ν
6 θ ← random angle uniformly chosen in [0, 2π[
7 V .addPoint((r, θ))
// Generation ofE

8 for i ∈ [[1, n]]:
9 for j ∈ [[i+ 1, n]]:
10 if dH(V [i], V [j]) ≤ R:
11 E.addEdge({i, j})

A naïve generation consists in generating vertices and then checking all pairwise hyperbolic distances
between vertices and add an edge if it is smaller or equal to R (see Algorithm 1). The implementation
is really simple, but its complexity is clearly in O(n2), which is in practice bad, as it becomes hard to
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3.1 Simulations

generate a random hyperbolic graph with more than 1000 vertices.

To improve the complexity, we have to benefit from the geometry of the graph. An idea is to decompose
the hyperbolic plane into circular bands. Most algorithms for generating random hyperbolic graphs are
using this technique (see [Pen17, vÖLM16, BFKL16, BKL15, LS17]). I had two major problems with those
algorithms: a large part is using parallel programmation, which I am not able to do in Python, and other
algorithms are not well explained. Therefore I created my own generator using some ideas I found in
those articles. It allows me to generate graphs with at most 106 vertices, while algorithms using paral-
lelism can go up to 108 vertices.

Let us start by considering two radii r1, r2. We can see in Figure 3.2 that there exists an angle θmax such
that two vertices u, v with ru = r1 and rv = r2 are adjacent if and only if θuv ∈ [0, θmax].
Thus we need to introduce the function

∆θ : [0, R]2 −→ [0, π]
r1, r2 7−→ θmax = max {θ ∈ [0, π] | dH((r1, 0), (r2, θ)) ≤ R}

(the equality between θmax and the other term follows from the invariance by rotation of dH).
Given two vertices u and v, we have:

{u, v} ∈ E ⇐⇒ θuv ≤ ∆θ(ru, rv) (3)

Using equation (2), we obtain:

∆θ(r1, r2) = arccos
(

cosh(r1) cosh(r2)− cosh(R)
sinh(r1) sinh(r2)

)

with the convention arccos([−∞,−1]) = π and arccos([1,+∞]) = 0.
∆θ satisfies the following properties:

– ∆θ is symmetric (in fact, if it was not, the graph would be directed ...),
– for all r ≥ 0,∆θ(., r) is decreasing (simply by derivating the term inside the arccos),
– for all r ≥ 0,∆θ(0, r) = π, as the term inside the arccos is equal to−∞. This is also logical, as a
vertex at the origin is connected to all vertices.

We will use those properties to create a generator.

The idea is to decompose B(O,R) into circular bands. For any vertex, we can associate to each band
an angle range in which all its neighbours located in that band are, as we can see in Figure 3.3. Then
the objective is to use those ranges and a classification of vertices in each band to reduce the number of
tests.
The main steps of the algorithm are the following. See Algorithm 2 for details:

lines 1-3 We decomposeB(O,R) into circular bands. The first band isB(O,R/2) and then all bands have a
constant length, as in Figure 3.3.

lines 4-17 Then we generate n vertices with density f 2. Each vertex (r, θ) is added to its band and then we
create requests for all upper bands (including its own band): for each band, we calculate the range
of the request which is [θ ± ∆θ(r, rmin)] where rmin is the inferior radius limit of the band3. All
requests are added to a list of requests associated to each band.

Then we generate the set of edges:

lines 18-19 Asvertices inB(O,R/2)are formingaclique (theyareall connected, using the triangular inequality
of dH), we add all couple of vertices in this ball toE.

2density function introduced in Definition 2.1
3Note that the range [θ ±∆θ(r, rmin)] is not always included in [0, 2π]. When it is not the case, and as we will then make

comparisons with angles in [0, 2π], we split the request in two requests with ranges included in [0, 2π].
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to 8), requests are sent to a small part of vertices
(in the red area)

Figure 3.3: Circular bands decomposition and requests linked to a fixed vertex (in yellow).

line 21 For all bands, we sort the set of vertices (resp. requests) by their angle (resp. minimum angle).
lines 22-42 For eachband (except the first one), we check the requests. Taking vertices (r, θ) in order (so sorted

by angle), we create a list of all candidate requests such that θ is included in the range of the re-
quest. As requests are also sorted, we do not have to check this condition for all the requests.
Then, for each candidate request, if the distance between the considered vertex and the vertex of
the request is less thanR, we add an edge between them, otherwise we do nothing4. For the next
vertex, we delete candidate requests which are no more satisfying the conditions, and then add
new satisfying requests.

In Figure 3.4,we can see thegeneration timeof some randomhyperbolic graphswith the twoalgorithms.
For Algorithm 1, the number of comparisons does not depend on α and thus the time of execution does
not depend either. For Algorithm 2,α has a little role. Indeed, whenα decreases, there aremore vertices
near to the center of the graph. Those vertices create more requests (because they have more bands to
test with) andmoreover, theirs requests have bigger ranges.

By performing a linear regression, we see the order two (O(n2)) of Algorithm 1. Algorithm 2 seems to be
of order one (O(n)). In reality, it is not exactly the case. It is hard to find the complexity of the algorithm,
as loops of the algorithm can depend on the random data (for instance the number of requests send by
a vertex depends on its layer). Therefore we do not calculate a precise order, but we think it is almost
linear with a logarithmic or polylogarithmic factor. See the referencesmentioned above formore details
about the complexity of the best algorithms.

REMARK 3.1. It takes a long time to plot the graph a�er the generation of V andE. But this is not a
problem as most of the time, simulations do not require a plot of the graph.

4you can see in the algorithm other conditions (line 40) which are just here to avoid duplicates
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Algorithm 2: fast generator of Gα, ν(n)
Input : α, ν, n, β
Output: V ,E

1 R← 2 log(n/ν) V ← [] E ← {}
2 nbBands← max(2, bβRc+ 1)
3 limits← [0, R/2, R/2 + c,R/2 + 2c, . . . , R− c,R] with c = R/[2 ∗ (nbBands− 1)] // Band Limits
// Generation of V , band points and band requests

4 bands_V ← [[], [], . . . , []] bands_R← [[], [], . . . , []] // two lists composed of nbBands empty lists
5 for i ∈ [[1, n]]:
6 r ← random radius with density ρ = ρα,ν
7 θ ← random angle uniformly chosen in [0, 2π[
8 b← search band such that limits[b] ≤ r < limits[b+ 1]
9 V .addPoint((r, θ)) bands_V .addPoint((i, r, θ))

// Generation of requests from point i
10 for band ∈ [[max(1, b), nbBands]]:
11 θmin

req ← θ −∆θ(r, limits[band]) θmax
req ← θ + ∆θ(r, limits[band])

12 if θmin
req < 0:

13 bands_R[band].addRequests([i, b, 0, θmax
req ], [i, b, θmin

req + 2π, 2π]) // decomposition into 2 requests
14 elif θmax

req > 2π:
15 bands_R[band].addRequests([i, b, 0, θmax

req − 2π], [i, b, θmin
req , 2π])

16 else:
17 bands_R[band].addRequest([i, b, θmin

req , θ
max
req ])

// Generation ofE: first we add the clique of vertices in band 0, then for other bands we analyse all requests
18 for all couples (i, ri, θi), (j, rj , θj) ∈ bands_V [0]:
19 E.addEdge({i, j})
20 for band ∈ [[1, nbBands]]:
21 sort bands_V [band] by θ sort bands_R[band] by θmin

req

22 candidates_R = []
23 for (ipt, rpt, θpt) ∈ bands_V [band]:
24 new_E = []
25 for req ∈ candidates_R:
26 if θpt > req[3]:
27 candidates_R.removeRequest(req) // remove requests whose range is exceeded
28 test_new_req = True
29 while test_new_req and len(bands_R[band]) > 0:
30 req = (ireq, breq, θmin

req , θ
max
req )← bands_R[band][0]

31 if θmin
req ≤ θpt:

32 bands_R[band].removeRequest(req)
33 if θpt ≤ θmax

req :
34 candidates_R.addRequest(req) // add new candidates requests for this vertex
35 else:
36 test_new_req = False // other requests are also too high for this vertex
37 for req = (ireq, breq, θmin

req , θ
max
req ) ∈ candidates_R:

38 rreq, θreq = V [ireq]
39 candidate = {ireq, ipt}
40 if dH((rreq, θreq), (rpt, θpt)) ≤ R and candidate /∈ new_E and ireq 6= ipt and ((breq = band and

ireq < ipt) or breq 6= band):
41 new_E.addEdge(candidate)
42 E.addEdges(new_E)
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Figure 3.4: Generation time of Gα,1(n).
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3.1.3 Illustration of some properties

I also tried to verify some of the properties announced in Paragraph 2.2.5.

Theorem 2.1 We have seen that Gα, ν(n) admits a power-law distribution with exponent depending
on α. Let us check this property by generating some random hyperbolic graphs and draw their degree
distribution.
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Figure 3.5: Degree distribution of vertices of Gα, 1(n). Theoretical distribution in red, up to a
multiplicative contant. Distributions are cut to intervals of most interest.

In Figure 3.5, we can see the degree distribution of some random hyperbolic graphs. For each graph, we
add the theoretical distribution in red, that is to say the curveCk−β for a well chosen constantC and:

β =
{

2α + 1 if α ≥ 1
2

2 if α ≤ 1
2

For the sake of clarity, we do not plot the whole distribution (so the maximum degree is not the limit of
the horizontal axis).
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Overall, we observe that the shape of the distribution corresponds to the expectation. For small values
of α, there are small fluctuations but they do not modify the general shape.
Even if we do not plot the distribution entirely, in practice we observe that the match is up to the maxi-
mum degree, which confirms the result of Gugelmann et al. (see [GPP12]) who showed that the degree
distribution follows a power-law distribution at all scales.

In Figure 3.6, we observe a concentration e�ect by considering the superposition of the degree distribu-
tions from 10 graphs: fluctuations are smaller.
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Figure 3.6: Concentration of the degree distribution: sum of 10 degree distributions of Gα, 1(n).

Taking other values of ν does not change the power-law distribution:
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Figure 3.7: Degree distribution of G0.5, ν(1000).

ν just modifies the constantC and the minimum degree where the power-law begins:

– if ν is big, thenR is small and so the graph is more dense. Thus the number of vertices with a very
small degree is really small, and the power-law distribution begins only a�er a minimum degree
(' 20 for ν = 5),

– otherwise, if ν is small, the graph is more sparse and there are vertices with small degrees: the
power-law distribution begins earlier (' 10 for ν = 1,' 4 for ν = 0.5).
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Theorem 2.3 We can also verify the growth properties about the giant component.
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Figure 3.8: Illustration of Theorem 2.3. The giant component of each graph is coloured in magenta/red.
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When α < 1, the theorem a�irms that the size of the giant component is at least linear with n, that is to
say that fixing α < 1 and ν > 0, there exists a constant c = c(α, ν) such that |C1| > cn a.a.s.5. Figure
8(a) confirms this result: c = 0.5 is su�icient.
While when α > 1, the size of the component is sub-linear so the ratio |C1|

n
tends to 0 as n tends to+∞.

We can observe this in Figure 8(b): when n increases, the size ofC1 is not increasing linearly.
For α = 1, we have seen that the behaviour of the giant component depends on ν. It is hard to illustrate
this as it requires graphs with a really significant number of vertices to show a real di�erence.

n = 1000 n = 5000 n = 10000 n = 50000
α = 0.9 473.5 2842.4 4832.4 22705.5
α = 1.1 174.1 425.4 622.1 1003.0

Figure 3.9: Average size of the giant component of 10 Gα, 1(n).

In Figure 3.9, we can see the average size of the giant component of 10 random hyperbolic graphs per
parameters. This confirms that the growth is on average linear when α > 1 and sublinear for α < 1.

Theorem2.4 Theasymptotical result of this theorem isnot really compatiblewith simulationsallowing
only a finite number of vertices. Indeed, taking α < 1/2, we can still have some isolated vertices when
n is fixed. In fact, the distinction between the two cases near to α = 1/2 is not clear. Nevertheless,
as we have already seen with the figures of this report (see for instance Figure 2.2), a small α induces a
connected graph while a bigger α generates a lot of small components.

5we recall thatC1 is the giant component of the graph
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3.1.4 Push & pull

We ran some simulations of the push & pull rumor spreading into our di�erentmodels in order to under-
stand the general behaviour and characteristics of the spread.

Let us focus on the legend that we will use for all our simulations:
• the vertex initially informed by the rumor will be in yellow,
• a vertex informed by (a) push(s) of at least one of its neighbours will be in red,
• a vertex informed by a pull will be in green,
• a vertex informed both by (a) push(s) and a pull will be in black,
– an edge used to inform one vertex by a push will be in red,
– an edge used to inform one vertex by a pull will be in green,
– an edge used to inform one vertex both by a push and a pull will be in dark.

Note that a vertex can be informed by more than one of its neighbors, because of pushs: the vertex can
make at most one pull per time, but it can receive a push from all its already informed neighbours. This
explains the black legend. We focus the reader on the fact that this case only appearswhen the push and
the pull happen at the same time ! Otherwise it is the first process that informed the vertex that counts.

Most of the time, we will just show the giant component (as other vertices will not be informed) and
choose uniformly the initially infected vertex.

Simulations into the random hyperbolic graphmodel In Figures 3.10 and 3.11, we can see two simu-
lations in the same graph. Let us analyse them:

(i) during the first steps,weobservepushsandpulls into the sub-component6 of the initially informed
vertex (with almost only pushs at the beginning),

(ii) the sub-component becomesmore andmore informed, thenwe need to transmit the information
to the rest of the graph. Butmost of the time, there are just a few edges available for the transmis-
sion. That i’s why we have to wait the activation of this edge (see time 14 of Figure 3.10). This gives
the information to a vertex with a low radius and thus an important number of connections.

(iii) this important number of connections implies a significant number of pulls during the next steps
from edges of the same sub-component but with bigger radii and lower degree.

(iv) the same process (steps (ii) and (iii)) happens while there are some non-informed isolated sub-
components.

Obviously, the position of the initially informed vertex is significant:

– a vertex with a big radius will imply step (i), while if it has a small radius the process will directly
move on to step (iii),

– a vertex located on one side of the component will take more time to inform the rest of the com-
ponent, as there will be more phases of propagation.

By comparing Figures 3.10 and 3.11, we can see the e�ect of the initial position.

6wedonot give aprecise definitionof the sub-component, butwe can seeon the graphs some regionswith a lot of internal
connections but with one or two connections between the regions. We call those regions the sub-components
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Figure 3.10: A push & pull simulation into G0.8, 1(1000).
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Figure 3.11: Another simulation into the same RHG, starting at another vertex.
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Figure 3.12: A push & pull simulation into G0.75, 1(1000).

Figure 3.12 is another simulation in a new graph. First we observe that the giant component is really
bigger than the one of the precedent graph, even if α changes just a little.
During the simulation, theprocessmentionedabove seems tohappenonly one time, as there is no really
isolated sub-component. The transmission at time t = 4 to a central vertex directly informs all regions
of the graph.

Conjecture on the average spreading time In Figure 3.13, we observe the evolution of the average
spreading time into Gα, 1(n). In each subfigure, we fix α and then for some values of n, we generate 20
random hyperbolic graphs in which we realise 10 push & pull simulations. We then show the average
time of those simulations in blue, plus or minus the standard deviation for the red curves.
At the sight of those simulations, a plausible conjecture is that the average time is inΘ(nα−1/2) (see the
concordance of the blue and black curves). In Paragraph 3.2.2, we try to give theoretical arguments to
support the latest conjecture.
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(d) α = 0.8
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(e) α = 0.9
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Figure 3.13: Average spreading time into Gα,1(n). For each pair (α, n), we simulate 200 push & pull
processes into 20 Gα,1(n) (10 simulations per graph).

Othermodels In Paragraph3.2.3, we introduce somegraphmodels thatwe theoretically study in order
to better understand the spread properties. For the sake of conciseness, we do not want to put simula-
tions of all the models in this report. The reader can find them on YouTube.
Nevertheless, we will quickly present a simulation corresponding to the auxiliary graph that we studied
most.

Letm, c ∈ N∗ andD ≥ 3c− 1. We consider the following graph:
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3.1 Simulations

– the set of vertices is composed ofm groups of size c (thus there are N = m × c vertices). Let us
denote them byK0, K1, . . . , Km−1.

– the set of edges is such that all groups are cliques and all pair of two consecutive groups are induc-
ing a complete bipartite graph. SoK0 ∪K1,K1 ∪K2, . . .andKm−1 ∪K0 are cliques.

– we then add loops to all vertices such that they end upwith degree exactlyD (which is possible as
D ≥ 3c− 1, as each vertex is neighbor to the vertices of 3 groups, thus 3c− 1 vertices).

This graph corresponds to the auxiliary graph Ĝk introduced in Paragraph 3.2.3. Parametersm, c andD
are in this graph depending on α, ν, n but we do not want to focus on this for the simulation. We just
keep in mind thatm� c� D and all those parameters are big.
We want to understand how the propagation happens. Let us fix a first informed vertex. Without loss of
generality, we can assume that this vertex belongs toKm/2. In Figure 3.14, we can see a typical spread.
In this simulation, we have c = 100 vertices per group and we watch the evolution of the number of
informed vertices per groups at each time.
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Figure 3.14: A propagation into the auxiliary graph with one layer, taking
(Nk, Dk,m) = (5000, 1000, 50).

The main observation that we will use in our reasoning (see Paragraph 3.2.5) is the following: there is
a kind of wave that propagates more or less at a constant speed, from the moment when at least a few
groups are almost fully informed. We will use this constant speed to decompose our steps in phases of
same length of time. Moreover, the tail of the wave7 seems to satisfy the following property: the ratio
between the number of informed vertices in two consecutive groups is almost constant. This is another
important idea of our reasoning.

7groups for which at least one vertex had already receive the information but not all
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3.2 Mathematical approach for the push & pull model

In this section, we fix α ∈]1/2, 1[, ν > 0 and n ∈ N∗. We set G := Gα,ν(n). We recall thatR = 2 log(n/ν)
and that∆θ(r1, r2) represents themaximal angle formed by two nodes at distanceR, at radius r1 and r2
respectively from the origin.

We will introduce later some graph models in which vertices can have loops. For the sake of clarity, we
will use the term edge only for a link between two distincts vertices, while we refer to a loop for a link
that relies a vertex to itself. We refer to a link when considering an edge or a loop without distinction.
The degree of a vertex is equal to the number of its links8.

Here are some notations:

DEFINITION 3.1. In G:

– we denote by Lyri the set of vertices of layer i, that is to say the vertices with a radial coordi-
nate in ]i− 1, i]:

Lyri := {v ∈ V | i− 1 < rv ≤ i}

– Ni := E[card(Lyri)] represents the expected number of vertices in Lyri,
– Di := E[deg(v) | v ∈ Lyri] represents the expected degree of a vertex in Lyri,
– T represents the time a push & pull spread takes to inform all vertices.

We also define:

DEFINITION 3.2. Let µ = µα, ν be the probability measure according to which the points are gen-
erated, that is to say that for every point set S, we have

µ(S) :=
∫
S
f(u) du = 1

2π

∫
S
ρ(ru) du = 1

2π

∫
S

α sinh(αru)
cosh(αR)− 11[0,R[(ru) du

Note that µ is rotation-invariant as the last integral depends only on the radial coordinate of the points
of S.

3.2.1 Useful identities

In this paragraph, we introduce some important lemmas for the study of random hyperbolic graphs.

LEMMA 3.1. Let r1, r2 ∈ [0, R]. Then:

∆θ(r1, r2) =
{

π if r1 + r2 ≤ R

2 e
R−r1−r2

2 (1 + Θ(eR−r1−r2)) otherwise

The case r1 + r2 ≤ R is a simple application of the triangle inequality. For the other case, we use
trigonometric identities and TAYLOR series to prove this lemma, but no particularly interesting ideas for
the model. A complete proof of this result can be found in [GPP12].

8note that loops are not counted twice, as it could be the case in the literature
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LEMMA 3.2. Let u = (ru, θu) ∈ [0, R] × [0, 2π[ and r = r(n) ∈ [0, R] be a function of n such that
r(n) −→

n→+∞
+∞. We have:

µ(BH(O, r)) = e−α(R−r)(1 + o(1)) (4)

µ(BH(u,R) ∩ BH(O,R)) = C(α) e−ru/2(1±O(e−(α−1/2)ru + e−ru)) (5)

whereC(α) = 2α
π(α−1/2) .

Further, for r ≤ R− ru:

µ(BH(u,R) ∩ BH(O,R) \ BH(O, r)) = C(α) e−ru/2(1±O(e−(α−1/2)ru + e−ru)) (6)

while for r ≥ R− ru it holds that:

µ(BH(u,R) ∩ BH(O,R) \ BH(O, r)) = C(α) e−ru/2
(

1−
(

1 +
α− 1/2
α+ 1/2

e−2αr
)

e−(α−1/2)(R−r)
)(

1±O(e−ru + e−ru−(R−r)(α−3/2))
)

(7)

This lemma introduces useful identities and uses classical integrals calculation for random hyperbolic
graphs. This is why we recall the proof of those results:

PROOF We have:

µ(BH(O, r)) = 1
2π

∫
BH(O,r)

α sinh(αrv)
cosh(αR)− 1 dv =

∫ r

0

α sinh(αr̃)
cosh(αR)− 1 dr̃ = cosh(αr)− 1

cosh(αR)− 1

= eαr + e−αr−2
eαR + e−αR−2 = e−α(R−r) 1 + e−2αr−2 e−αr

1 + e−2αR−2 e−αR = e−α(R−r)(1 + o(1))

which gives equation (4).

Let us now prove the other results. For equation (5), we have:

µ(BH(u,R) ∩ BH(O,R)) =
∫ R

0

∫ ∆θ(ru,r)

−∆θ(ru,r)
f(r) dθ dr = 2

∫ R

0
∆θ(ru, r)f(r) dr

Using Lemma 3.1, it follows that:

µ(BH(u,R) ∩ BH(O,R)) = 2π
∫ R−ru

0
f(r) dr + 2

∫ R

R−ru
∆θ(ru, r)f(r) dr

= µ(BH(O,R− ru)) + I(R− ru)

where I(x) = 2
∫ R
x ∆θ(ru, r)f(r) dr. For equation (7), we have forR− ru ≤ r ≤ R:

µ(BH(u,R) ∩ BH(O,R) \ BH(O, r)) = 2I(r)

Then wemust compute I(x) for x ≥ R− ru. We use Lemma 3.1 to obtain:

I(x) = 2
∫ R

x
2 e

R−ru−y
2 (1±O(eR−ru−y)) α sinh(αy)

2π(cosh(αR)− 1) dy

= 2α
π(cosh(αR)− 1)

∫ R

R−ru
e
R−ru−y

2 (1±O(eR−ru−y)) sinh(αy) dy

Let us consider first the integral without the error term. Using that y 7−→ 2
4α2−1 e−y/2(2α cosh(αy) +

sinh(αy)) is a primitive of y 7−→ e−y/2 sinh(αy), we obtain:

∫ R

x
e
R−ru−r

2 sinh(αr) dr =
2 e−ru2

[
(2α cosh(αR) + sinh(αR))− eR−x2 (2α cosh(αx) + sinh(αx))

]
4α2 − 1
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Then as (cosh(αR)− 1)−1 = 2 e−αR(1 + Θ(e−αR)), one can obtain:
∫ R

x
e
R−ru−r

2 sinh(αr) dr = α e−ru/2
α− 1/2

(
1−

(
1 + α− 1/2

α + 1/2

)
e−(α−1/2)(R−x)

)
(1 + Θ(e−αR))

We consider now the error term. Recall that x ≥ R− ru, we have:∫ R

x
e
R−ru−y

2 O(eR−ru−y) sinh(αy)
cosh(αR)− 1 dy =

∫ R

x
O(e 3

2 (R−ru−y)+α(y−R))dy = O
(
e−3ru/2 + e−3ru/2−(R−x)(α−3/2)

)

Finally, it follows that:

I(x) = C(α) e−ru/2
(

1−
(

1 + α− 1/2
α + 1/2

)
e−(α−1/2)(R−x)

)(
1±O(e−ru + e−ru−(R−x)(α−3/2))

)
(8)

This gives equations (7). We can also deduce equation (5), taking x = R− ru:

µ(BH(u,R) ∩ BH(O,R)) = e−αru(1 + o(1)) + C(α) e−ru/2
(
1±O(e−ru + e−(α−1/2)ru)

)
and as e−αru = e−ru/2−(α−1/2)ru , we can put the first term into the error of the second, which gives the
result.

Equation (6) can be shown in a similar way.

From this lemma, we deduce two important results:

LEMMA 3.3. Let i = i(n) ∈ [1, R] be a layer such that i(n) −→
n→+∞

+∞. Then:

Ni = n(1− e−α) e−α(R−i)(1 + o(1))

and
Di = C(α) e 1

2 (R−i)(1 + o(1))

PROOF By independence of the vertices, we have:

Ni := E[card(Lyri)] = nµ(BH(O, i) \ BH(O, i− 1))
= n

[
e−α(R−i)(1 + o(1))− e−α(R−(i−1))(1 + o(1))

]
= n(1− e−α) e−α(R−i)(1 + o(1))

Assuming that there is a vertex u on layer i, the set of its neighbours is the set of vertices of V \ {u} that
belongs toBH(u,R). Thus:

Di := E[deg(v) | v ∈ Lyri] = (n− 1)µ(BH(u,R) ∩ BH(O,R))
= (n− 1)C(α) e−i/2(1±O(e−(α−1/2)i + e−i))
= C(α) e 1

2 (R−i)(1± o(1))
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3.2.2 About the conjecture

We have seen with the push & pull simulations (Paragraph 3.1.4) that the average spreading time might
beof orderΘ(nα−1/2). In this short paragraphweexplainour theoretical intuitionbehind this conjecture.
This is obviously not a proof.

A typical spread starts by informing a vertex of big radius, near to the boundary. In a really quick time,
most of the vertices of its sub-component will become informed, including the one with the lowest ra-
dius. We think that the time of this first phase is not far frombeing constant (that is to say not depending
on n).
But in order to spread the rumor to the other sub-components, only a few edges can be used. Those
edges connect vertices of small radius. Suppose those vertices are inB(O,R/2). Then the average time
taken by the informed vertex to inform another vertex of the ball is:

τ = P(inform at least one vertex ofB(O,R/2) in one step)−1

'
(
P(inform a fixed vertex)× card({v ∈ B(O,R/2)})

)−1
(union bound is a good approximation)

'
(

2
DR/2

×NR/2

)−1

This last term is proportional to nα−1/2. Thus the second phase consisting to inform a few vertices of
B(O,R/2) takes approximately some Θ(nα−1/2) steps. Then all other vertices of the graph are quickly
informed (using pulls) in a third phase, almost constant.

Therefore the longest phase is the one inΘ(nα−1/2).

3.2.3 Useful graphmodels

In order to simplify the analysis we propose somemodels of graphs. The goal is to understand how the
spread happens into one layer or between two layers of G. We fix ν = 1 in order to avoid some constant
factors and bemore readable.

Firstmodel: the randomhyperbolicgraph inexpectation Weconsider the followinggraph, denoted9
byG:

– the set of vertices V is divided into layers: V = ∪1≤i≤bRcLyri. Each layer Lyri is a set of vertices
such that card(Lyri) = Ni and vertices are arranged uniformly on the circle of radius i, that is to
say that their radius is equal to i and the angle between two consecutive vertices is 2π/Ni,

– the set of edgesE is then generatedwith the same rule as in randomhyperbolic graphs: we put an
edge between two vertices if their hyperbolic distance is less or equal toR,

– we then add loops to vertices of each layer Lyri so they end up with degree10Di.

Second model: the one layer graph LetR/2 ≤ k ≤ R. We consider the following graph, denoted by
Gk :

– the set of vertices V = Lyrk is made up of vertices into only one layer, where Lyrk is generated as
in the last graph,

– the set of edgesE is then generated with the same rule as random hyperbolic graphs,
– we then add loops to all vertices so they end up with degree exactlyDk.
9remark thatG and the other considered graphs still depend on α, ν, n
10for this model we do not justify that there can not be some vertices in Lyri with more thanDi edges. If it is not the case

we do not add loops to those vertices
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We have to justify that a�er the generation ofE, we do not have vertices with more thanDk edges. Let
Din
k denote the number of neighbors a vertex in Lyrk has within its same layer. Only vertices at angular

distance at most∆θ(k, k) are neighbors to a fixed vertex, so it represents only a 2∆θ(k, k)/(2π) fraction
of the vertices of Lyrk. Using Lemmas 3.1 and 3.3, we have :

Din
k = Nk

2∆θ(k, k)
2π = 1

π
n(1− e−α) e−α(R−k) 2 eR−2k

2 (1 + o(1))(1 + Θ(eR−2k))

= 2
π

(1− e−α) eR/2 e−α(R−k) eR−2k
2 (1 + o(1)) = 2

π
(1− e−α) e(1−α)(R−k)(1 + o(1))

ThusDin
k = o(Dk) (Lemma 3.3). Then for a large enough n, we do not exceed degreeDk before adding

loops for any vertex.

Third model: the two layers graph LetR/2 ≤ a < b ≤ R. We consider the following graph, denoted
byGa,b :

– the set of vertices V is divided into two layers: we have V = Lyra ∪ Lyrb, still generated similarly,
– the set of edgesE is then generated with the same rule as random hyperbolic graphs,
– we then add loops to vertices of each layer Lyri so they end up with degree exactlyDi.

We have to make the same justification as in the last model. LetDext
a (resp. Dext

b ) denote the number of
neighbors a vertex in Lyra (resp. Lyrb) has outside its layer. We have:

Dext
a = Nb

2∆θ(a, b)
2π = 2

π
(1− e−α) eR/2 e−α(R−b) e

R−a−b
2 (1 + o(1))

= 2
π

e
R−a

2 e−(α−1/2)(R−b)(1 + o(1))

Dext
b = Na

2∆θ(a, b)
2π = 2

π
e
R−b

2 e−(α−1/2)(R−a)(1 + o(1))

One can check thatDext
a = o(Da) andDext

b = o(Db). ThusDin
a +Dext

a = o(Da) andDin
b +Dext

b = o(Db)
using thecalculationof the lastmodel. Forn largeenough, all verticeshavea lowerdegree thanexpected
before adding the loops.

Two auxiliary graphs LetR/2 ≤ k ≤ R. We consider the following graph, denoted by Ĝk:

– wehaveV = Lyrk as in theone layergraph. VerticesofLyrk arepartitioned intogroupsK0, . . . , Kmk−1
of consecutive (in angular distance) vertices so that each groupKi spans a set of vertices at angu-
lar distance at most∆θ(k, k). We refer to aKi as aK-group and as all groups have same length,
we put |K| = |Ki|. We havemk = Nk/ |K|.

– the set of edges E is then generated such that each pair of two consecutiveK-groups induces a
clique11.

– we then add loops to all vertices so they end up with degree exactlyDk.

Note (and check) that each edge of the one layer graph is an edge of this graph. It is easy to see12 that
Din
k (Ĝk) = 3

2D
in
k (Gk) and soDin

k (Ĝk) = o(Dk).

Let R2 ≤ a < b ≤ R. We consider the following graph, denoted by Ĝa,b :

– we have V = Lyra ∪ Lyrb as in the two layer graph. Similarly as in Ĝk, vertices of Lyra (resp. Lyrb)
are partitioned into groupsA0, . . . , Ama−1 (resp. B0, . . . , Bmb−1) with associated angular distance
∆θ(a, a) (resp. ∆θ(b, b)),

11soK0 ∪K1,K1 ∪K2, . . .andKm−1 ∪K0 are cliques
12indeedDin

k (Ĝk) = 3 |K| = 3Nk∆θ(k, k) = 3
2D

in
k (Gk)
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– in each layer, the set of edgesE is then generated as in Ĝa,b. We then connect a vertex of Lyra and
a vertex of Lyrb according to the rule of random hyperbolic graphs.

– we then add loops to vertices of each layer Lyri so they end up with degree exactlyDi.

There again, we do not exceed the expected degree of each vertex (all arguments have already been
mentioned earlier).

Goals We think that the spread will have the same properties in G andG. The understanding of what
happens inGmight be easier.
But there aremany layers inG. That’s why we introduceGk andGa,b: the first objective is to understand
the spread in one layer, and then watch what happens when we add another layer: does this layer help
the spread into the first layer or not? The behaviour could depend on the value of b: a layer close to a
might not influence similarly as a layer close to the boundaryR and thus far from a.
As we will see in Lemma 3.4, the push & pull will process faster in the auxiliary graphs. They are intro-
duced to find a lower bound for the one layer and the two layer graphs. We thought that their study
would be easier than the one layer and the two layer graphs, but we will see later that it is still far from
being simple.

3.2.4 Comparison of the push & pull spread time in graphs

LEMMA 3.4. [PUSH & PULL IS FASTER IN THE AUXILIARY GRAPH]

We have:
T (Ĝk) . T (Gk) and T (Ĝa,b) . T (Ga,b)

PROOF Let us demonstrate the result for the one layer case. We will provide a coupling such that the
push & pull propagation is always faster in Ĝk than inGk. We can adapt this proof to the two layer case,
using exactly the same arguments.

We assume n large enough such that all vertices have loops in Ĝk.
We writeGk = (V,E) and Ĝk = (V, Ê).

Let us fix a vertex u ∈ V . We considerNu = {v | {u, v} ∈ E} and N̂u = {v | {u, v} ∈ Ê}. It is easy to
see thatNu ⊆ N̂u as each edge ofGk is an edge of Ĝk.

InGk, u hasDk − |Nu| loops while it hasDk − |N̂u| in Ĝk. To each vertex v of N̂u \ Nu, we associate a
loop, called lv, of u inGk. See that non-associated loops of u inGk are in same number as the loops of u
in Ĝk, thus we say they are the same loops.

We consider the following coupling for the push & pull process into the two graphs: when a fixed vertex
u uses one of its links inGk to try to propagate the information:

– if this link was an edge inGk, the same edge is used in Ĝk,
– if this link was a loop:

– if this loop is one of the {lv}v∈N̂u\Nu , the edge between u and the associated v is used in Ĝk,
– if it is another loop, we use the same loop in Ĝk.

Denote by It = {v | v is informed at t inGk} (resp. Ît = {v | v is informed at t in Ĝk}) the set of informed
vertices at time t inGk (resp Ĝk), we will show by induction that according to this coupling It ⊆ Ît at all
times.

– At time t = 0, the two sets are equals (they contain the first informed vertex).
– We now assume that at time t ≥ 0, we have It ⊆ Ît.
Consider a vertex u in It+1 \ It. There exists a vertex v ∈ It such that u or v tries to use the edge
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{u, v} to propagate the information inGk at time t + 1. Then by the coupling, this edge has also
been used in Ĝk. So u ∈ Ît+1. Thus It+1 ⊆ Ît+1.

To conclude, let us notice that T (Gk) = min({t ≥ 0 | It = V }) and T (Ĝk) = min({t ≥ 0 | Ît = V }).
Using the coupling, we have that ∀ω, T (Ĝk)(ω) ≤ T (Gk)(ω).

3.2.5 Study of Ĝk

In this paragraph, we present some ideas that we tried to develop to find bounds onE[T (Ĝk)]. Themain
ideas have been observed in our simulations (see the end of Paragraph 3.1.4). We do not claim to give a
precise proof, but we hope that those ideas will be specified soon. We will only consider the push case13
in order to simplify the study.

We recall that the typical behaviour observed is the following: there is a kind of wave that propagates
more or less at a constant speed, from themomentwhen at least a few groups are almost fully informed.
Moreover, the tail of the wave seems to satisfy the following property: the ratio between the number of
informed vertices in two consecutive groups is almost constant.

Without loss of generality we assume that the rumor starts at a vertex in groupK0. Sub-indices of the
K-groups aremodulomk, soKmk−j = K−j ... andwe considermost of the time indices between−mk/2
andmk/2, especially when indices are used as a power.
Moreover, let τk represent the expected time it takes a vertex in Lyrk to choose one of its neighbors in
Lyrk (and so pushes the rumor to this neighbor if it does not have it already). We have:

τk = Dk

3 |K| − 1

Upper bound We divide the steps into consecutive phases of length∆ (that will be specified shortly).
We would like to argue that for an appropriately chosen ρ the following holds: a�er r ∈ N phases, r <
mk/2, we have with high probability:

– for |i| ≥ r + 1, then no vertex ofKi is informed,
– for |i| ≤ r, then at leastmin(ρr−|i|, |K|) vertices inKi are informed.

Let Ir(Ki) be the set of informed vertices inKi at the end of the r-th phase.

Consider ∆′ the average time needed for a fixed informed vertex in aK-group to inform one vertex of
the followingK-group, assuming any vertex of this next group has not the information. We have:

∆′ = P(inform at least one of |K| vertices with one vertex)−1 '
(
|K|
Dk

)−1

= Dk

|K|

where the' is an union bound approximation (that we think will be good as |K| /Dk −→
n→+∞

0).

We set∆ = (1 + η)∆′ for an η > 0 to be chosen later.
The claim clearly holds for r = 0. Assume it holds for r. By symmetry, it is enough to establish that the
claim holds for r + 1when i is positive.

We fix an i and consider groups Ki−1 and Ki such that Ir(Ki−1) > 0 and Ir(Ki) ≤ |K|. We have
Ir(Ki−1) ≥ ρr−(i−1) and Ir(Ki) ≥ ρr−i. We will see that with high probability, during the (r + 1)-th
phase, the informed vertices ofKi−1 will inform at least ρ(r+1)−i vertices ofKi.

Indeed, assuming no vertex ofKi is informed (it is not the case by hypothesis, but taking o� informed
13we consider the same rumor spreading without any pull
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vertices only slows the spread), we have if Ir(Ki) = ρr−i (if it is superior the process is accelerated):

E[number of informed vertices ofKi by vertices ofKi−1 during phase r + 1] ' |K|
Dk

ρr−(i−1)

(still using an union bound).

Thus informing ρ(r+1)−i vertices takes approximately

ρ(r+1)−i ×
(
|K|
Dk

ρr−(i−1)
)−1

= ∆′

steps. Usinga concentration inequality,wehope to show thatduring the r+1-thphase (of length∆ > ∆′
steps), with high probability the informed vertices ofKi−1 inform at least ρ(r+1)−i vertices ofKi for an
appropriate η > 0.

Reasoning similarly with all iwill then give the claim for r + 1.

This argumentation makes believe thatE[T (Ĝk)] = O(mkDk/ |K|).

Lower bound Let ε > 0 and ρ := ρ(ε) > 1 be a constant, that wewill specify later. Wewill assume that
initially, there are

⌊
ρ−|i| |K|

⌋
informed vertices in Ki for all i. This will make the rumor spreads faster,

thing that we can do in the lower bound case. In particular, all vertices inK0 are informed and no vertex
inK` is informed if and only if ρ` > |K| (clearly ` =

⌈
1

ln(ρ)

⌉
ln(|K|)).

We divide time into consecutive phases of length∆ =
⌊
τk
Cρ

⌋
(1− ε) forC > 1 to be chosen later on. We

would like toargue that for anappropriately chosenρ the followingholds: a�er r ∈ Nphases, r < mk−`,
we have with high probability:

– for |i| ≥ r + `, then no vertex ofKi is informed,
– for r < |i| < r + `, then at most ρr−|i| |K| vertices inKi are informed.

Let Nr,i = ρr−|i| |K| be the maximum number of informed vertices in Ki a�er r phases if the above
scenario happens. We recall that Ir(Ki) is the set of informed vertices inKi at the end of the r-th phase.
We want to show that with high probability we have |Ir(Ki)| ≤ Nr,i for all r and i.

The claim clearly holds for r = 0. Assume it holds for r. By symmetry, it is enough to establish that
the claim holds for r + 1 when i is positive. Let E be the event that for some i ∈ [[r, r + `]], we have
|Ir+1(Ki)| > Nr+1,i. Furthermore, let Ei,j for some r < i < j ≤ r + ` be the event that at the end of the
(r + 1)-th phase:

– if 0 ≤ s < i, then |Ir+1(Ks)| ≤ Nr+1,s (at most ρr+1−s |K| of the vertices inKs are informed14),
– if i ≤ s < j, then |Ir+1(Ks)| > Nr+1,s (more than ρr+1−s |K| vertices inKs are informed).
– |Ir+1(Kj)| ≤ Nr+1,j (at most ρr+1−j |K| of the vertices inKj are informed).

Observe that

E =
r+`−1⋃
i=r+1

r+⋃̀
j=i+1

Ei,j

It will su�ice for our purposes to show that each Ei,j occurs with small probability. We next establish this
for the case j = i+ 1 (in fact the case j > i+ 1will be similar and use the same argument). Let:

– X−i be the number of times an informed vertex inKi−1 pushes the rumor to a vertex inKi during
the (r + 1)-th phase.

– X0
i be the number of times an informed vertex inKi pushes the rumor to a vertex inKi during the

(r + 1)-th phase.
14This holds trivially for 0 ≤ s ≤ r
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– X+
i be the number of times an informed vertex inKi+1 pushes the rumor to a vertex inKi during

the (r + 1)-th phase.

We will fixC such that 1
Cρ

(ρ2 + ρ+ 1) = ρ− 1. Hence,C = 1 + ρ2+2
ρ−1 > 1 (see the reason just below).

Note that if Ei,i+1 occurs, then either E−i :=
{
X−i > 1

Cρ
Nr+1,i−1

}
or E0

i :=
{
X0
i >

1
Cρ
Nr+1,i

}
or E+

i :={
X+
i > 1

Cρ
Nr+1,i+1

}
occurs, since otherwise, at the end of the (r + 1)-th phase we have:

|Ir+1(Ki)| ≤ Nr,i +X−i +X0
i +X+

i

≤ Nr,i + 1
Cρ

(Nr+1,i−1 +Nr+1,i +Nr+1,i+1)

≤ ρr−i |K|+ 1
Cρ

(ρr+2−i + ρr+1−i + ρr−i) |K|

≤ ρr−i |K|+ (ρ− 1)ρr−i |K|
≤ ρr+1−i |K| = Nr+1,i

contradicting the fact that there are more than Nr+1,i = ρr+1−i Dk
τk
informed vertices in Ki by the end

of the (r + 1)-th phase. We claim that each of the events E−i , E0
i and E+

i occurs with small probability.
The arguments should be similar for bounding the probability that each event occurs. Below, we only
discuss the bound for the first event.

Recall that by induction hypothesis, |Ir(Ki−1)| ≤ Nr,i−1. Let Tn be the smallest time step when at least
n vertices inKi−1 have pushed the rumor towards a vertex inKi during the (r + 1)-th phase. Note that
it might be the case that Tn = Tn+1 for some values of n (indeed, it might happened that in just one step
the number of informed nodes inKi−1 goes from being less than n to being at least n+ 1). Observe that
if E−i occurs, then ∑

0≤n< 1
Cρ
Nr+1,i−1

Tn+1 − Tn ≤
⌊
τk
Cρ

(1− ε)
⌋

Unfortunately, the distribution of {Tn+1 − Tn}n is not easy to handle, so we further consider that each
time step t is subdivided into substeps, as many substeps as the number of informed vertices inKi−1 at
the start of step t (so di�erent t’s might be subdivided into di�erent number of substeps). Now, at the
start of a time step, all the vertices inKi−1 that are informed are arbitrarily ordered and then each one
performs apush in that exact order. Let tn be the substep (stopping time) atwhich then-th vertex ofKi−1
becomes informed.

Clearly, {tn+1 − tn}n∈N are independently distributed. Moreover, tn+1 − tn is distributed according to a
geometric distribution with success parameter D

in
k

Dk
= 1

τk
. By definition of E−i , at the end of the (r+ 1)-th

phase, the number of informed vertices inKi−1 is at mostNr+1,i−1 = ρNr,i−1, so

Tn+1 − Tn ≥
1

ρNr,i−1
(tn+1 − tn)

Putting all of our discussion above together, recalling again that Nr+1,i−1 = ρNr,i−1, we see that if
{Gn}0≤n< 1

Cρ
Nr+1,i−1

is a family of independent geometric random variables with success probability 1
τk
,

then:

P(E−i ) ≤ P

 1
ρNr,i−1

∑
0≤n< 1

Cρ
Nr+1,i−1

Gn ≤
τk
ρC

(1− ε)


Note that

E

 1
ρNr,i−1

∑
0≤n< 1

Cρ
Nr+1,i−1

Gn

 = 1
ρNr,i−1

∑
0≤n< 1

Cρ
Nr+1,i−1

E[Gn]︸ ︷︷ ︸
τk

= τk
ρC
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So, as long asNr,i−1 is large, then a tail bound on the sumof geometric distributions should give uswhat
we want. For small values ofNr,i−1, maybe direct calculations would give us a reasonable bound.

There is still one event that we can not control: at the end of the (r + 1)-th phase, there could be an
informed vertex in aKi-group with i ≥ r + 1 + `, even if E does not occur. We do not know how to deal
with it.

Forgetting this technical issue, this argumentation let us think that E[T (Ĝk)] = Ω(mkDk/ |K|). Maybe
a logarithmic factor should be added to obtain the good bound.

Conclusion We hope that E[T (Ĝk)] = Θ(mkDk/ |K|) . There is still somework to perform in order to
prove this.

3.2.6 Study of Ĝa,b

In Ĝa,b, wewant to see ifLyrb is helpingLyra to propagate the rumor in the graph, that is to say ifT (Ĝa,b)
is less than T (Ĝa). In this short paragraph, wewill juste give our intuition, as the ideas we used are quite
technical.

Vertices inAi are partitioned into sub-groupsA′im′a , . . . , A
′
(i+1)m′a−1, of consecutive (in angular distance)

vertices so thateachsub-groupspansanon-emptysetof verticeswithinangulardistanceatmost∆θ(a, b).

Let us assume that a vertex of oneA′-group, sayA′ := A′j , is informed. We wonder how this vertex will
inform a vertex ofA′+ = A′j+1 orA′− = A′j−1. There are two strategies:

i) the considered vertex directly pushes the rumor to a vertex ofA′+ orA′−,
ii) the considered vertex pushes the rumor to a vertex ofLyrb. Then some pushs happen inLyrb, they
move the rumor forward or backward in angular distance. At some time, a vertex of Lyrb which is
neighbor of a vertex ofA′+ orA′−, will be informed and will then push the rumor toA′+ orA′−.

The first strategywill take τa steps in expectation. The second is less clear and depends on the value of b.
It will take aboutDa/ |B| = Da/(∆θ(b, b)Nb) steps to informone vertex ofLyrb. Then the time to inform
inLyrb a neighbor of a vertex ofA′+ orA′−will basically depend on the number ofB-groups that we have
to cross. If b is just above a, this number will be small. If b is not far from R, it will be important. In all
cases we think it will take aΘ(τb) steps. Then in |B|Db steps the neighbor of A′+ or A′− will inform one
of thoseA′-groups by a push.

One can see thatDa/ |B| = o(τa) and τb = o(τa). Thus we can think that the second strategy will be in
expectation the faster. We think that there exists a layer b? := b?(a) such that if b < b?, this is the case,
but if b > b?, there are too many phases of length τb to propagate the rumor into the B-groups, and so
the second strategy takes more time.

To conclude, we expect that for small values of b, Lyrb will help Lyra to spread the rumor, while if b is too large, the behaviour will be the same as in Ĝa.
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4 Conclusion

During this internship, I continued my discovery of the job of researcher. It has been really instructive
to work in discrete probabilities, a field that interests me a lot. I appreciated to learn how to deal with
typical questions of graph theory.

The study of the push & pull model was a real research problem. I thought that it was di�icult given
my knowledge. It required reading many articles and running many simulations. I did all simulations
myself and I think that it was helpful for the understanding of the propagations. Concerning the theo-
retical ideas, we are still far from a proof of the expected time of propagation, but Dieter andMarcos will
continue to work on it.
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