L3 - Intégration 2021-2022 : TD 4

Intégrales dépendant d'un paramètre

Exercice 1 – *Étude de fonction*. Soit $\varphi: [0,1] \to \mathbb{R}$ une fonction Lebesgue-intégrable, et soit $F: \mathbb{R}_+ \to \mathbb{R}_+$ la fonction définie pour tout $t \ge 0$ par $F(t) \coloneqq \int_{[0,1]} \sqrt{\varphi(x)^2 + t} \, dx$.

- 1. Montrer que F est continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* .
- 2. Donner une condition nécéssaire et suffisante pour que F soit dérivable en 0.

Exercice 2 – *Un calcul de primitive*. Soient $t_0 \in \mathbb{R}$ et μ une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ ne chargeant pas t_0 (*i.e.* $\mu(\{t_0\}) = 0$), et une fonction $f \in \mathcal{L}^1_{\mathbb{R}}(\mu)$ telle que la fonction $(x \mapsto xf(x)) \in \mathcal{L}^1_{\mathbb{R}}(\mu)$. On pose

$$F(t) := \int_{\mathbb{R}} (t - x)^+ f(x) \ \mu(\mathrm{d}x).$$

Montrer que la fonction F est définie sur \mathbb{R}_+ et est dérivable en t_0 de dérivée

$$F'(t_0) = \int_{1-\infty,t_0]} f(x) \ \mu(\mathrm{d}x).$$

Exercice 3 – *Transformée de Laplace*. Soit μ une mesure de probabilité sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on pose

$$L(x) = \int_{\mathbb{R}} e^{xt} d\mu(t).$$

- 1. Montrer que l'ensemble $D = \{x \in \mathbb{R}, L(x) < +\infty\}$ est un intervalle non vide de \mathbb{R} .
- 2. Montrer que L est convexe sur D.
- 3. Montrer que *L* est de classe C^{∞} sur l'intérieur de *D*.

Exercice 4 – *Initiation à la transformation de Fourier*. On se place sur \mathbb{R} muni de la tribu des boréliens et de la mesure de Lebesgue. Pour $f \in \mathbb{L}^1(\mathbb{R})$, on définit $\mathcal{F}(f)$ par $\mathcal{F}(f)(\xi) = \int_{\mathbb{R}} e^{-2i\pi x\xi} f(x) \, dx$ lorsque cela à un sens.

- 1. Montrer que $\mathcal{F}(f)$ est bien définie et continue sur \mathbb{R} , et bornée par $||f||_1$.
- 2. (*Parenthèse utile pour la suite*) Montrer que si g est une fonction de $\mathbb{L}^1(\mathbb{R})$, on peut trouver des suites $(y_k)_{k\in\mathbb{N}}$ et $(z_k)_{k\in\mathbb{N}}$, la première tendant en décroissant vers $-\infty$, la seconde tendant en croissant vers $+\infty$, et telles que $\lim_{k\to +\infty} g(y_k) = 0$ et $\lim_{k\to +\infty} g(z_k) = 0$.
- 3. (*) On suppose de plus que f est de classe C^1 et que sa dérivée est dans $\mathbb{L}^1(\mathbb{R})$. Montrer qu'alors $\mathcal{F}(f')(\xi) = 2i\pi\xi\mathcal{F}(f)(\xi)$ pour tout $\xi \in \mathbb{R}$.
- 4. Soit φ une fonction de classe C^{∞} à support compact. En considérant $\mathcal{F}(\varphi \varphi'')$, montrer qu'il existe une constante C telle que $|\mathcal{F}(\varphi)(\xi)| \leq \frac{C}{1+4\pi^2|\xi|^2}$ pour tout $\xi \in \mathbb{R}$.
- 5. Déduire de ce qui précède que si $f \in \mathbb{L}^1(\mathbb{R})$, alors $\mathcal{F}(f)(\xi)$ tend vers 0 lorsque $|\xi|$ tend vers $+\infty$.

Note : les résultats généraux et plus profonds sur la transformation de Fourier ainsi que sa définition sur $L^2(\mathbb{R}^n)$ sont au programme du cours du second semestre : intégration et probabilités.

Exercice 5 – Transformée de Fourier d'une mesure. Soit μ une mesure finie sur les boréliens de \mathbb{R} .

1. Montrer que

$$f(x) = \int_{\mathbb{R}} e^{itx} \, \mathrm{d}\mu(t)$$

est définie pour tout $x \in \mathbb{R}$.

On suppose dorénavant que $\frac{2f(0)-f(h)-f(-h)}{h^2}$ a une limite finie lorsque h tend vers 0.

- 2. Montrer que $\int_{\mathbb{R}} t^2 d\mu(t)$ est finie.
- 3. Montrer que f est de classe C^2 .

Exercice 6 – *Convolution*. 1. Soit $f \in \mathcal{L}^1_{\mathbb{R}}(\lambda)$ et φ une fonction dérivable, bornée à dérivée bornée sur \mathbb{R} . On définit la **convolution** de f par φ , et on note $f * \varphi$, la fonction $f * \varphi : \mathbb{R} \to \mathbb{R}$ définie pour tout $y \in \mathbb{R}$ par

$$f * \varphi(y) := \int_{\mathbb{R}} \varphi(y - x) f(x) \lambda(dx).$$

Montrer que $f * \varphi$ est bien définie, bornée et dérivable sur \mathbb{R} . Donner l'expression de sa dérivée.

2. Soit I =]0, 1[. Soit f une fonction de $\mathbb{L}^1(\mathbb{R})$ nulle en dehors de I. Pour h > 0, on pose

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt.$$

Montrer que f_h est bien définie et continue sur \mathbb{R} .

Exercice 7 – Intégrale de Gauss. Calculer l'intégrale de Gauss $I := \int_{\mathbb{R}^+} e^{-x^2} \, \mathrm{d}x$. Indication : introduire les fonctions $f: x \mapsto (\int_0^x e^{-t^2} \, dt)^2 \, et \, g: x \mapsto \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} \, dt \, et \, exprimer \, f + g$.

Attention: Prochain Cours le Lundi 18 Octobre 2021 de 13h30 à 15h30 Prochain TD le Mardi 19 Octobre 2021 de 13h30 à 15h30