Mesures Complexes, Théorème de Radon-Nikodym & Décomposition de Lebesgue

Exercice 1 – *Pour s'échauffer*. On se place sur ([0,1], $\mathcal{B}([0,1])$, λ). Montrer qu'il n'existe pas de partie $A \in \mathcal{B}([0,1])$ telle que pour tout intervalle I de [0,1]:

$$\lambda(A\cap I)=\frac{1}{2}\lambda(I)\;.$$

<u>Indication</u>: On pourra supposer que A existe et introduire la mesure $\mu = \mathbb{1}_A \cdot \lambda$.

Exercice 2 – *Attention aux hypothèses*. Soit $\mathbb R$ muni des mesures λ de Lebesgue et μ de dénombrement.

- 1. Montrer que μ n'admet pas de décomposition de la forme donnée par le théorème de décomposition de Lebesgue. Quelle hypothèse de ce dernier est mise en défaut?
- 2. Montrer que λ est absolument continue par rapport à μ , mais qu'il n'existe pas de fonction mesurable $f: \mathbb{R} \longrightarrow \mathbb{R}_+$ telle que $\lambda = f \cdot \mu$. Que peut-on en conclure?

Exercice 3 – *La mesure du diable*. Trouver une mesure étrangère à la mesure de Lebesgue sur [0,1] et sans atome. Rappel : On dit que deux mesures μ et ν sont étrangères, et on note $\mu \perp \nu$, s'il existe un ensemble mesurable E tel que μ soit portée par E, et ν par E, c'est-à-dire si $\mu(E^c) = 0$ et $\nu(E) = 0$.

Exercice 4 – *La décomposition de Jordan est minimale*. Soit μ une mesure réelle sur un espace mesuré (X, \mathcal{A}). On rappelle que la *décomposition de Jordan* de μ est donnée par

$$\mu^+ = \frac{|\mu| + \mu}{2}$$
 et $\mu^- = \frac{|\mu| - \mu}{2}$.

1. Montrer qu'il existe $\{A^+,A^-\}$ une partition de X composée d'éléments de \mathcal{A} telle que la mesure μ^{\pm} est portée par A^{\pm} et

$$\forall E \in \mathcal{A}, \quad \mu^{\pm}(A) = \pm \mu(E \cap A^{\pm}) \; .$$

2. Montrer que la décomposition de Jordan est minimale au sens que si μ_1 et μ_2 sont deux mesures positives bornées telles que $\mu = \mu_1 - \mu_2$, alors $\mu_1 \ge \mu^+$ et $\mu_2 \ge \mu^-$.

Exercice 5 – *Décomposition des mesures finies*. On se propose de montrer le résultat suivant : Pour toute mesure finie μ sur les boréliens de \mathbb{R} , il existe une décomposition $\mu = \mu_a + \mu_s + \mu_\delta$, avec $\mu_a \ll \lambda$, μ_s une mesure sans atome et μ_s , μ_δ et λ étrangères entre elles.

- 1. Soient X un espace topologique séparé σ -compact et $\mathcal{B} = \mathcal{B}(X)$ la tribu engendrée par les ouverts de X. Soit μ une mesure borélienne positive sur X, c'est-à-dire telle que $\mu(K) < +\infty$ pour tout compact K.
 - (a) Montrer que l'ensemble $D=\{a\in X: \mu(\{a\})>0\}$ est dénombrable.
 - (b) On pose $\mu_{\delta}(A) = \mu(A \cap D)$ pour tout $A \in \mathcal{B}$. Montrer que μ_{δ} est une mesure sur X, et que de plus

$$\mu_{\delta} = \sum_{a \in D} \mu(\{a\}) \delta_a .$$

- (c) En déduire qu'il existe une mesure borélienne sans atome μ_s sur X telle que $\mu = \mu_s + \mu_\delta$.
- 2. Conclure.

Exercice 6 – *Mesure complexe et partition finie*. Soit μ une mesure complexe sur un espace mesurable (X, \mathcal{A}). Montrer que

$$\forall E \in \mathcal{A}, \quad |\mu|(E) = \sup \left\{ \sum_{k=1}^{n} |\mu(E_k)| : (E_1, \dots, E_n) \text{ partition finie de } E \right\}.$$

Exercice 7 – *Espace des mesures signées*. 1. Montrer que $\mathcal{M}(\mathbb{R})$ l'espace des mesures boréliennes signées sur \mathbb{R} est un espace de Banach pour la norme $\|.\|: \mu \mapsto |\mu|(\mathbb{R})$.

2. Soit (X, \mathcal{A}, μ) un espace mesuré fini. Montrer que pour tout $f \in \mathbb{L}^1(X, \mathcal{A}, \nu)$, on a $||f||_1 = ||f \cdot \nu||$ où $||.|| : \mu \mapsto |\mu|(X)$.

1

Exercice 8 – *Variation totale et mesures de probabilités*. Soit (Ω, \mathcal{A}) un espace probabilisable, et soient \mathbb{P} et \mathbb{Q} deux mesures de probabilités sur (Ω, \mathcal{A}) .

1. Montrer que

$$||\mathbb{P} - \mathbb{Q}|| = 2 \max_{A \in \mathcal{A}} |\mathbb{P}(A) - \mathbb{Q}(A)| = 2 \max_{A \in \mathcal{A}} \mathbb{P}(A) - \mathbb{Q}(A).$$

2. Si de plus Ω est un ensemble dénombrable et $\mathcal{A} = \mathcal{P}(\Omega)$, montrer que :

$$\|\mathbb{P} - \mathbb{Q}\| = \sum_{\omega \in \Omega} |\mathbb{P}(\omega) - \mathbb{Q}(\omega)|.$$

Exercice 9 – *Transformée de Fourier d'une mesure*. Soit μ une mesure borélienne complexe sur $[0, 2\pi[$. On définit la suite de ses coefficients de Fourier par :

$$\forall n \in \mathbb{Z}, \quad \hat{\mu}(n) = \int_0^{2\pi} e^{-int} d\mu(t).$$

On suppose que $\hat{\mu}(n) \longrightarrow_{n \to +\infty} 0$ et on se propose de montrer que $\hat{\mu}(n) \longrightarrow_{n \to -\infty} 0$.

- 1. Soit f mesurable et $|\mu|$ -intégrable. Montrer que $\widehat{\mu_f}(n) \longrightarrow_{n \to +\infty} 0$, où μ_f désigne la mesure $f \cdot \mu$. *Indication : On commencera par établir le résultat pour f un polynôme trigonométrique.*
- 2. Montrer que $\widehat{|\mu|}(n) \longrightarrow_{|n| \to +\infty} 0$ et conclure.

Exercice 10 – *Convolution de mesures*. Soient μ et ν deux mesures boréliennes σ -finies sur \mathbb{R}^n et $s: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ l'application somme. On pose $\mu * \nu(A) = \mu \otimes \nu(s^{-1}(A))$ pour A borélien.

- 1. Montrer que $\mu * \nu$ est une mesure borélienne, qui n'est pas forcément finie sur les compacts, même si μ et ν le sont. On appelle $\mu * \nu$ la *convolée* de μ et ν .
- 2. Montrer que

$$\forall A \in \mathcal{B}(\mathbb{R}^n), \quad \mu * \nu(A) = \int_{\mathbb{R}^n} \mu(A - t) \ \nu(\mathrm{d}t) = \int_{\mathbb{R}^n} \nu(A - t) \ \mu(\mathrm{d}t) \ .$$

3. On suppose que μ et ν sont finies. Soit g une fonction borélienne bornée, montrer que :

$$\int_{\mathbb{R}^n} g(t) \ \mu * \nu(\mathrm{d}t) = \int_{\mathbb{R}^n \times \mathbb{R}^n} g \circ s(x, y) \ \mu \otimes \nu(\mathrm{d}x, \mathrm{d}y) \ .$$

- 4. Montrer que l'opérateur de convolution est commutatif et associatif sur l'ensemble des mesures boréliennes de probabilité. Montrer que la mesure de Dirac en 0 est élément neutre.

 Remarque: L'idée des approximations de l'unité est justement de s'approcher de la mesure de Dirac en 0.
- 5. La mesure de probabilité de Poisson π_{λ} de paramètre $\lambda > 0$ est définie par

$$\pi_{\lambda} = \sum_{n \geq 0} e^{-\lambda} \frac{\lambda^n}{n!} \delta_n .$$

Vérifier que π_{λ} définie bien une mesure puis calculer $\pi_{\lambda} * \pi_{\mu}$ pour $\lambda, \mu > 0$.

Exercice à chercher pour la prochaine fois :)

Exercice 11 – *L'intégrale de Gauss is back*. 1. Montrer que $\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$.

2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique réelle. Calculer $\int_{\mathbb{R}^n} e^{-\langle x, Ax \rangle} dx$.