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1 · MR Fingerprinting

Some MRI sequences are sensitive to several
physiological tissue parameters. MR Finger-
printing [4] consists in using these sequences to
simultaneously reconstruct parameter maps, al-
lowing to reduce the examination time.
To estimate the voxel parameters, large dictio-
naries of signals, associated to known parame-
ters, are numerically simulated for the sequence
under consideration. The time signal (the fin-
gerprint) of the acquired voxel can then be com-
pared with the signal dictionary: by identifying
the dictionary signal closest to the fingerprint,
parameters are associated with the considered
voxel: this is the matching method.
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Figure 1: Simulation of 5 fingerprints for a
bSSFP-type sequence

Considering microvascular parameters
To date, simple sequences (Spoil-type) have been
used to estimate the relaxometry parameters T1

and T2 as well as the magnetic field B1. The use
of sequences sensitive to more parameters (e.g.,
bSSFP-type) could enable the estimation of ad-
ditional parameters such as microvascular pa-
rameters cerebral blood volume CBV and mean
vessel radius R without the need for contrast
agent injection.

Problems caused by considering vascular
parameters CBV and R

• How to simulate associated signals?
• How to manage the size explosion of sig-

nal dictionaries?

2 · Matching versus Deep Learning

Once the MRI acquisition has been performed,
the challenge of MR Fingerprinting is to estimate
all parameter maps as accurately and as quickly
as possible, which is done by various strategies.
Matching limitations
Matching reconstruction with a signal dictionary
has many limitations, which become very con-
straining as the number of parameters to be esti-
mated increases and make matching unsuitable
for clinical applications.

✓ Reliable estimation of parameters

✗ Significant reconstruction time

✗ Discretize parameter maps

✗ Storage of large dictionaries

✗ Poor scalability with the number of
parameters

Deep Learning Deep learning methods have
been proposed to improve reconstructions while
overcoming the limitations of matching.

✓ Fast reconstruction time

✓ Continuous maps as the network
interpolates parameters

✓ No dictionary storage after training

✗ Only works with a limited number of
parameters

Solutions for taking into account vascular
parameters CBV and R

• Piecewise simulation of vascular signal
dictionaries
✓ quickly generated by batch during net-
work training

• Use of a bidirectional network structure
✓ adaptation to the increasing complex-
ity of the task (both in size and variety of
parameters to be estimated)

3 · Fast Simulation of Vascular Dictionaries
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Figure 2: Simulation of an intra-voxel frequency distribution

Two-step simulation of vascular signal dictionaries:
1. A base dictionary is generated to store signals satisfying Bloch equations. Those signals

depend on 4 parameters T1, T2, B1 and δf .
2. Tissue microvascular structures induce magnetic frequency δf inhomogeneities at the voxel

scale. Thanks to simulations of these inhomogeneities for numerous structures associated with
parameters CBV and R [2], a vascular dictionary can be generated by convolving the base
dictionary, similarly to [5].
✓ During a network training, the vascular dictionary could be generated by pieces in a quick
way, only by storing the base dictionary.
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Figure 3: Creation of a vascular MRF dictionary with 6 parameters using a base dictionary with 4
parameters and frequency distributions.

4 · Use of a Neural Network with a Bidirectional Structure

The dense [1] or unidirectional re-
current [3] structures considered by
previous works for reconstruction
do not seem suitable for the dimen-
sional increase of the problem.
We propose to use a bidirectional
LSTM network (BiLSTM), which al-
lows better retrieval of the informa-
tion stored in the different parts of
the signal.
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Figure 4: Structure of the bidirectional LSTM network
Training
To avoid storing large dictionaries, the network is trained from a base dictionary of 1 000 000 signals,
used to batch-simulate vascular dictionaries of the same size (for each batch, each signal is convolved
with one random vascular structure among 3 000). Gaussian noise at various SNR levels is then added
to signals. Alltogether, with about 20 batches, around 20 000 000 signals are generated.

5 · Benefits of the Bidirectional Structure for Reconstruction
Matching

✓ Parameters T1, T2, B1 and δf :
good reconstruction contrasts

✗ Reconstruction time (> 20 min)
✗ Vascular parameters CBV and R:

reconstruction quality limitated
by the size and the storage of
the dictionary (≃ 7 000 000 sig-
nals: 43 000 base signals × 300
vascular structures)

Unidirectional LSTM networks
✓ Great reconstruction with a weak

number of parameters
✗ Inefficient networks when the

number of parameters increases

Bidirectional LSTM networks
✓ Reconstruction time (≃ 3.5 s)
✓ Map reconstruction in lines with

matching for parameters T1, T2,
B1 and δf

✓ Map contrasts of CBV and R
✓ Observed values in different brain

areas in lines with literature

Figure 5: Reconstructed parameter maps of a healthy
volunteer obtained by matching and various neural

networks from Cartesian acquisitions

Table 1: Mean and standard deviation of parameter values reconstructed in white matter (WM), grey
matter (GM) and sagittal sinus (SS)

Parameter Tissue LSTM Rev. LSTM BiLSTM Matching Literature

T1 (ms) WM 538± 121 1119± 177 823± 55 931± 46 ∼ 690− 1100
GM 674± 202 1440± 261 1320± 339 1381± 380 ∼ 1286− 1393

T2 (ms) WM 0.5± 6 37± 15 54± 5 50± 13 ∼ 56− 80
GM 8± 22 53± 21 69± 21 80± 70 ∼ 78− 117

CBV (%)
WM 19.8± 4.5 40.0± 0.4 2.0± 0.9 2.0± 5.0 ∼ 1.7− 3.6
GM 22.2± 5.3 39.8± 1.2 3.9± 3.4 1.49± 1.9 ∼ 3− 8
SS 19.5± 8.5 37.3± 4.2 21.2± 7.3 28.2± 8.8

R (µm)
WM 8.2± 0.8 10.0± 0.0 5.6± 0.3 4.2± 2.3 6.8± 0.3
GM 8.5± 0.9 10.0± 0.0 5.8± 0.5 5.4± 2.2 7.3± 0.3
SS 7.8± 1.3 10.0± 0.2 8.8± 1.5 10.1± 2.2

Best values compared to literature are in orange.

6 · Undersampled Reconstruction

Reconstructing undersampled spiral acquisi-
tions shows the robustness to various noise lev-
els and acquisition types. Subsampling signifi-
cantly reduces examination time.
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Figure 6: Reconstructed parameter maps of a
healthy volunteer obtained with our bidirectional

LSTM from a bSSFP spiral acquisition

7 · Conclusion & Limitations
Conclusions of our study

✓ Quick analysis of MRF data containing
multiple dimensions including microvas-
cular properties, using a BiLSTM network
trained with fast and realistic simulations

✓ Encouraging results on healthy volunteers,
with nice WM/GM contrast for CBV maps

Future work
• Conduct further (quantitative) analyses

and comparisons with reference methods
in patients to validate the whole approach

• Improve sequence sensitivity to vascular
parameters using automatic procedures in
order to improve the network reconstruc-
tion (avoiding smoothness effects)

• Improve signal simulations using more re-
alistic frequency distributions and adding
other sources of magnetic susceptibility to
our model (such as myelin fiber)
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