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Abstract
We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables with bounded means and unit
variance. This strategy, called EXPLORATION-BIASED SAMPLING, is not only asymptotically optimal: it is to the best of our knowl-
edge the first strategy with non-asymptotic bounds that asymptotically matches the sample complexity. But the main advantage
over other algorithms like TRACK-AND-STOP is an improved behavior regarding exploration: EXPLORATION-BIASED SAMPLING is
biased towards exploration in a subtle but natural way that makes it more stable and interpretable. These improvements are allowed
by a new analysis of the sample complexity optimization problem, which yields a faster numerical resolution scheme and several
quantitative regularity results that we believe of high independent interest.

Standard Gaussian Muti-Armed Bandit
A standard Gaussian multi-armed bandit problem is a collec-
tion of K ≥ 2 unit Gaussian distributions (N (µa, 1))a∈[K] in-
dexed by a set of actions [K] , {1, . . . ,K} called arms
→ the bandit problem is characterised by its mean vector

µ = (µ1, . . . , µK)T

In the following we consider bandit problems with means µ ∈
[0, 1]K and having a unique optimal arm, denoted by a∗(µ),
such that

µa∗(µ) > max
a∈[K]\{a∗(µ)}

µa

A learner interacts sequentially with an unknown bandit prob-
lem µ. At each round t ∈ N∗, he

• picks an action At ∈ [K] depending on past observations
• obtains a reward from distribution N (µAt , 1)

Best-Arm Identification with fixed confidence
The strategy of the learner consists of

• a sampling strategy that chooses the next action At
• a stopping rule τ and a decision rule âτ

The goal of Best-Arm Identification (BAI) is
• to find strategies that identify the best action a∗(µ) with

probability at least (1 − δ) for any µ, where δ ∈ (0, 1) is a
confidence level, that is

Pµ(âτδ 6= a∗(µ)) ≤ δ

→ such strategies are called δ-correct
• among all δ-correct strategies, find one that minimizes

the expected number of observations Eµ[τδ]

Lower bound for BAI [1]

Let Alt(µ) ,
{
λ : a∗(λ) 6= a∗(µ)

}
be the set of bandit problems

which have a different best arm than a∗(µ) and ∆K ,
{
v ∈

[0, 1]K :
∑
a∈[K] va = 1

}
Theorem 1. For any δ-correct strategy one has

∀µ, Eµ[τδ] ≥ T (µ) kl(δ, 1− δ)

where

T (µ)−1 , sup
v∈∆K

inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2
(1)

Asymptotically, this result yields lim inf
δ→0

Eµ[τδ]

log(1/δ)
≥ T (µ)

A δ-correct strategy for which equality holds is called asymp-
totically optimal and should approximately sample arms ac-
cording to the optimal weight vector w(µ) ∈ ∆K realizing the
supremum in the definition of T (µ)

[1] Garivier, A. and Kaufmann, E. (2016), Optimal Best Arm
Identification with Fixed Confidence, In 29th Conference On
Learning Theory (COLT)

TRACK-AND-STOP [1]

Let Na(t) and µ̂a(t) respectively denote the number of observa-
tions and average reward of arm a after round t

Main idea Track the current optimal weight vector
w(µ̂(t)) and force some minimal exploration rate of order

√
t

to ensure convergence to w(µ)

Algorithm 1: TRACK-AND-STOP

Input: confidence level δ, threshold function β(t, δ)
Output: stopping time τδ , estimated best arm âτδ

Observe each arm once ; t← K
while Z(t) ≤ β(t, δ) do

w̃(t)← w(µ̂(t))
if Ut , {a ∈ [K] : Na(t) <

√
t−K/2} 6= ∅ then

Choose At+1 ∈ argmina∈Ut Na(t)
else

Choose At+1 ∈ argmina∈[K]Na(t)−
∑t−1
s=K w̃a(s)

Observe YAt+1 and increase t by 1
τδ ← t ; âτδ ← argmaxa∈[K] µ̂a(t)

Pros and cons
3 δ-correct using threshold β(t, δ) = log(Rtα/δ) for some
α ∈ [1, 2] and constant R

3 asymptotically optimal
7 lack of non-asymptotic result (for fixed values of δ)
7 require to force exploration at an arbitrary rate (

√
t here)

Modifying the sampling strategy

Tracking the estimate vector w(µ̂(t)) is quite hazardous: with-
out forced exploration, a bad estimate can lead to an under-
sampling of the worst arms

Improvement Compute a confidence region CR for µ
around µ̂(t) and track the optimal weight associated to some
bandit µ̃ ∈ CR that maximizes exploration by satisfying

min
a∈[K]

wa(µ̃) = max
ν∈CR

min
a∈[K]

wa(ν)

→ this bandit µ̃ is computable: intuitively, maximizing wmin

over CR requires to increase and equalize all the positive gaps
as much as possible, making the identification of the second
best arm more challenging ; this principle allows to restrict the
search for µ̃ to only a few candidates, one per potential best arm

The 3 candidates for the example CR in red

We denote by OPTIMISTIC WEIGHTS(CR) the procedure com-
puting w(µ̃)

EXPLORATION-BIASED SAMPLING

Goal Improve TRACK-AND-STOP to obtain non-asymptotic
bounds and correct the unstability behaviors

Main idea Use the modified sampling strategy by comput-
ing confidence regions CRµ(t) for µ at each round

Algorithm 2: EXPLORATION-BIASED SAMPLING

Input: confidence level δ, threshold function β(t, δ), confidence
parameter γ

Output: stopping time τδ , estimated best arm âτδ

Observe each arm once ; t← K
while Z(t) ≤ β(t, δ) do

CRµ(t)←
∏
a∈[K]

[
µ̂a(t)± 2

√
log(4Na(t)K/γ)

Na(t)

]
w̃(t)← OPTIMISTIC WEIGHTS(CRµ(t))
Choose At+1 ∈ argmina∈[K]Na(t)−

∑t−1
s=K w̃a(s)

Observe YAt+1 and increase t by 1
τδ ← t ; âτδ ← argmaxa∈[K] µ̂a(t)

Pros and cons
3 δ-correct using same threshold as TRACK-AND-STOP

3 non-asymptotic bound with high probability

Theorem 2. Fix γ ∈ (0, 1), η ∈ (0, 1]. There exists an
event E of probability at least 1 − γ and δ0 > 0 such
that for any 0 < δ ≤ δ0, algorithm EXPLORATION-
BIASED SAMPLING satisfies

Eµ[τδ1E ] ≤ (1 + η)T (µ) log(1/δ) + oδ→0(1)

(with an explicit formula for δ0 and the oδ→0(1))

3 asymptotically optimal
3 natural exploration (no need to force exploration!)
7 the convergence of w̃(t) to w(µ) is slower than TRACK-

AND-STOP

Sample Optimization Problem

We obtained new quantitative regularity results for the solu-
tion of the optimization problem (1) defining T (µ)

Theorem 3. Let µ,µ′ having the same optimal arm a∗,
and assume that

(1− ε)(µa∗ − µa)2 ≤ (µ′a∗ − µ′a)
2 ≤ (1 + ε)(µa∗ − µa)2

for all a ∈ [K] \ {a∗} and some ε ∈ [0, 1/7]. Then

(1− 3ε)T (µ) ≤ T (µ′) ≤ (1 + 6ε)T (µ)

and ∀a ∈ [K], (1− 10ε)wa(µ) ≤ wa(µ′) ≤ (1 + 10ε)wa(µ)

Numerical experiments

Stability improvement

Evolution of w̃(t) when running the strategies with δ = 0.01,
γ = 0.2 and µ = (0.9, 0.8, 0.6, 0.4, 0.4).

The values of w(µ) are dotted

TRACK-AND-STOP

7 unstability of the weights: red and green weights fluctu-
ates (first estimates are poor in general, leading to unsta-
ble tracking weights, whereas intuitively one should pick
arms uniformly at the beginning)

7 bad arms would be under-sampled without forced explo-
ration (blue and yellow peaks)

EXPLORATION-BIASED SAMPLING

3 uniform weight vector during first rounds
3 stability of the tracking strategy
3 cautious separation of the weights when a clear distinc-

tion of the estimates appears

Efficiency The choice of the weights estimator, biased to-
ward uniform exploration, has a price: for practical values of
δ, EXPLORATION-BIASED SAMPLING samples a little less the
best arms than TRACK-AND-STOP and thus requires more ob-
servations before taking a decision


