

Standard Gaussian Muti-Armed Bandit

A standard Gaussian multi-armed bandit problem is a collection of $K \geq 2$ unit Gaussian distributions $(\mathcal{N}(\mu_a, 1))_{a \in [K]}$ indexed by a set of actions $[K] \triangleq \{1, \ldots, K\}$ called arms \rightarrow the bandit problem is characterised by its mean vector

$$\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)^{\mathsf{T}}$$

In the following we consider bandit problems with means $\mu \in$ $[0,1]^K$ and having a **unique optimal arm**, denoted by $a^*(\boldsymbol{\mu})$, such that

$$\mu_{a^*(\boldsymbol{\mu})} > \max_{a \in [K] \setminus \{a^*(\boldsymbol{\mu})\}} \mu_a$$

A learner interacts sequentially with an *unknown* bandit problem μ . At each round $t \in \mathbb{N}^*$, he

- picks an action $A_t \in [K]$ depending on past observations
- obtains a reward from distribution $\mathcal{N}(\mu_{A_t}, 1)$

Best-Arm Identification with fixed confidence

The **strategy** of the learner consists of

- a sampling strategy that chooses the next action A_t
- a stopping rule τ and a decision rule \hat{a}_{τ}

The goal of Best-Arm Identification (BAI) is

• to find strategies that identify the best action $a^*(\mu)$ with probability at least $(1 - \delta)$ for any μ , where $\delta \in (0, 1)$ is a confidence level, that is

$$\mathbb{P}_{\boldsymbol{\mu}}(\hat{a}_{\tau_{\delta}} \neq a^{*}(\boldsymbol{\mu})) \leq \delta$$

 \rightarrow such strategies are called δ -correct

• among all δ -correct strategies, find one that minimizes the expected number of observations $\mathbb{E}_{\mu}[\tau_{\delta}]$

Lower bound for BAI [1]

Let Alt(μ) $\triangleq \{ \lambda : a^*(\lambda) \neq a^*(\mu) \}$ be the set of bandit problems which have a different best arm than $a^*(\mu)$ and $\Delta_K \triangleq \{v \in$ $[0,1]^K : \sum_{a \in [K]} v_a = 1 \}$

Theorem 1. For any δ -correct strategy one has

$$\langle \boldsymbol{\mu}, \quad \mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \geq T(\boldsymbol{\mu}) \operatorname{kl}(\delta, 1-\delta)$$

where

$$T(\boldsymbol{\mu})^{-1} \triangleq \sup_{\boldsymbol{v} \in \Delta_K} \inf_{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\mu})} \sum_{a \in [K]} v_a \frac{(\mu_a - \lambda_a)^2}{2} \qquad (1)$$

Asymptotically, this result yields $\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\log(1/\delta)} \ge T(\mu)$

A δ -correct strategy for which equality holds is called **asymp**totically optimal and should approximately sample arms according to the **optimal weight vector** $w(\mu) \in \Delta_K$ realizing the supremum in the definition of $T(\boldsymbol{\mu})$

[1] Garivier, A. and Kaufmann, E. (2016), **Optimal Best Arm Identification with Fixed Confidence**, In 29th Conference On *Learning Theory (COLT)*

A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits Antoine Barrier^{1,2}, Aurélien Garivier¹, Tomáš Kocák³ ¹ ENS Lyon, ² Université Paris-Saclay, ³ University of Potsdam

Abstract

We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables with bounded means and unit variance. This strategy, called EXPLORATION-BIASED SAMPLING, is not only asymptotically optimal: it is to the best of our knowledge the first strategy with non-asymptotic bounds that asymptotically matches the sample complexity. But the main advantage over other algorithms like TRACK-AND-STOP is an improved behavior regarding exploration: EXPLORATION-BIASED SAMPLING is biased towards exploration in a subtle but natural way that makes it more stable and interpretable. These improvements are allowed by a new analysis of the sample complexity optimization problem, which yields a faster numerical resolution scheme and several quantitative regularity results that we believe of high independent interest.

TRACK-AND-STOP [1]

Let $N_a(t)$ and $\hat{\mu}_a(t)$ respectively denote the number of observations and average reward of arm a after round t

Main idea Track the current optimal weight vector $w(\hat{\mu}(t))$ and force some minimal exploration rate of order \sqrt{t} to ensure convergence to $w(\mu)$

Algorithm 1: TRACK-AND-STOP

Input: confidence level δ , threshold function $\beta(t, \delta)$ **Output:** stopping time τ_{δ} , estimated best arm $\hat{a}_{\tau_{\delta}}$

Observe each arm once ; $t \leftarrow K$ while $Z(t) \leq \beta(t, \delta)$ do $\tilde{\boldsymbol{w}}(t) \leftarrow \boldsymbol{w}(\hat{\boldsymbol{\mu}}(t))$ if $U_t \triangleq \{a \in [K] : N_a(t) < \sqrt{t} - K/2\} \neq \emptyset$ then Choose $A_{t+1} \in \operatorname{argmin}_{a \in U_t} N_a(t)$ else Choose $A_{t+1} \in \operatorname{argmin}_{a \in [K]} N_a(t) - \sum_{s=K}^{t-1} \tilde{w}_a(s)$ Observe $Y_{A_{t+1}}$ and increase t by 1

 $\tau_{\delta} \leftarrow t ; \hat{a}_{\tau_{\delta}} \leftarrow \operatorname{argmax}_{a \in [K]} \hat{\mu}_{a}(t)$

Pros and cons

- δ -correct using threshold $\beta(t, \delta) = \log(Rt^{\alpha}/\delta)$ for some $\alpha \in [1, 2]$ and constant R
- asymptotically optimal
- \checkmark lack of non-asymptotic result (for fixed values of δ)
- × require to force exploration at an arbitrary rate (\sqrt{t} here)

Improvement Compute a confidence region $C\mathcal{R}$ for μ around $\hat{\mu}(t)$ and track the optimal weight associated to some bandit $\tilde{\mu} \in C\mathcal{R}$ that maximizes exploration by satisfying

 \rightarrow this bandit $\tilde{\mu}$ is computable: intuitively, maximizing w_{\min} over CR requires to increase and equalize all the positive gaps as much as possible, making the identification of the second best arm more challenging ; this principle allows to restrict the search for $\tilde{\mu}$ to only a few candidates, one per potential best arm

EXPLORATION-BIASED SAMPLING

Pros and cons Improve TRACK-AND-STOP to obtain non-asymptotic Goal bounds and correct the unstability behaviors \checkmark δ -correct using same threshold as TRACK-AND-STOP non-asymptotic bound with high probability **Main idea** Use the modified sampling strategy by computing confidence regions $C\mathcal{R}_{\mu}(t)$ for μ at each round **Theorem 2.** Fix $\gamma \in (0, 1), \eta \in (0, 1]$. There exists an event \mathcal{E} of probability at least $1 - \gamma$ and $\delta_0 > 0$ such Algorithm 2: EXPLORATION-BIASED SAMPLING that for any $0 < \delta \leq \delta_0$, algorithm EXPLORATION-**Input:** confidence level δ , threshold function $\beta(t, \delta)$, confidence BIASED SAMPLING satisfies parameter γ **Output:** stopping time τ_{δ} , estimated best arm $\hat{a}_{\tau_{\delta}}$ $\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta} \mathbb{1}_{\mathcal{E}}] \le (1+\eta)T(\boldsymbol{\mu})\log(1/\delta) + o_{\delta \to 0}(1)$ Observe each arm once ; $t \leftarrow K$ while $Z(t) \leq \beta(t, \delta)$ do (with an explicit formula for δ_0 and the $o_{\delta \to 0}(1)$) $\mathcal{CR}_{\boldsymbol{\mu}}(t) \leftarrow \prod_{a \in [K]} \left[\hat{\mu}_a(t) \pm 2\sqrt{\frac{\log(4N_a(t)K/\gamma)}{N_a(t)}} \right]$ $\tilde{\boldsymbol{w}}(t) \leftarrow \mathsf{OPTIMISTIC} \ \mathsf{WEIGHTS}(\mathcal{CR}_{\boldsymbol{\mu}}(t))$ asymptotically optimal Choose $A_{t+1} \in \operatorname{argmin}_{a \in [K]} N_a(t) - \sum_{s=K}^{t-1} \tilde{w}_a(s)$ ✓ natural exploration (no need to force exploration!) Observe $Y_{A_{t+1}}$ and increase t by 1 \checkmark the convergence of $\tilde{w}(t)$ to $w(\mu)$ is slower than TRACK- $\tau_{\delta} \leftarrow t$; $\hat{a}_{\tau_{\delta}} \leftarrow \operatorname{argmax}_{a \in [K]} \hat{\mu}_{a}(t)$ AND-STOP

Modifying the sampling strategy

Tracking the estimate vector $\boldsymbol{w}(\hat{\boldsymbol{\mu}}(t))$ is quite hazardous: without forced exploration, a bad estimate can lead to an undersampling of the worst arms

$$\min_{a \in [K]} w_a(\tilde{\boldsymbol{\mu}}) = \max_{\boldsymbol{\nu} \in \mathcal{CR}} \min_{a \in [K]} w_a(\boldsymbol{\nu})$$

The 3 candidates for the example CR in red

We denote by OPTIMISTIC WEIGHTS(CR) the procedure computing $\boldsymbol{w}(\tilde{\boldsymbol{\mu}})$

We obtained new quantitative regularity results for the solution of the optimization problem (1) defining $T(\mu)$

and assume that

TRACK-AND-STOP

Efficiency The choice of the weights estimator, biased toward uniform exploration, has a price: for practical values of , EXPLORATION-BIASED SAMPLING samples a little less the best arms than TRACK-AND-STOP and thus requires more observations before taking a decision

Sample Optimization Problem

Theorem 3. Let μ, μ' having the same optimal arm a^* ,

 $(1-\varepsilon)(\mu_{a^*} - \mu_a)^2 \le (\mu'_{a^*} - \mu'_a)^2 \le (1+\varepsilon)(\mu_{a^*} - \mu_a)^2$

for all $a \in [K] \setminus \{a^*\}$ and some $\varepsilon \in [0, 1/7]$. Then $(1-3\varepsilon)T(\boldsymbol{\mu}) \le T(\boldsymbol{\mu}') \le (1+6\varepsilon)T(\boldsymbol{\mu})$ and $\forall a \in [K], \quad (1 - 10\varepsilon)w_a(\boldsymbol{\mu}) \le w_a(\boldsymbol{\mu}') \le (1 + 10\varepsilon)w_a(\boldsymbol{\mu})$

Numerical experiments

Evolution of $\tilde{w}(t)$ when running the strategies with $\delta = 0.01$, $\gamma = 0.2$ and $\mu = (0.9, 0.8, 0.6, 0.4, 0.4)$. The values of $w(\mu)$ are dotted

X unstability of the weights: red and green weights fluctuates (first estimates are poor in general, leading to unstable tracking weights, whereas intuitively one should pick arms uniformly at the beginning)

✗ bad arms would be under-sampled without forced exploration (blue and yellow peaks)

EXPLORATION-BIASED SAMPLING

uniform weight vector during first rounds

✓ stability of the tracking strategy

cautious separation of the weights when a clear distinction of the estimates appears