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Abstract Sample Optimization Problem

We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables with bounded means and unit
variance. This strategy, called EXPLORATION-BIASED SAMPLING, is not only asymptotically optimal: it is to the best of our knowl-
edge the first strategy with non-asymptotic bounds that asymptotically matches the sample complexity. But the main advantage
over other algorithms like TRACK-AND-STOP is an improved behavior regarding exploration: EXPLORATION-BIASED SAMPLING 1iS
biased towards exploration in a subtle but natural way that makes it more stable and interpretable. These improvements are allowed
by a new analysis of the sample complexity optimization problem, which yields a faster numerical resolution scheme and several

Standard Gaussian Muti-Armed Bandit

A standard Gaussian multi-armed bandit problem is a collec-
tion of K > 2 unit Gaussian distributions (N (jta,1))aeik] in-

dexed by a set of actions [K] = {1,..., K} called arms
— the bandit problem is characterised by its mean vector

We obtained new quantitative regularity results for the solu-
tion of the optimization problem (1) defining 7'(ut)

Theorem 3. Let u, ' having the same optimal arm a*,
and assume that

po= (1,5 i)’

In the following we consider bandit problems with means 1 €
0,1]" and having a unique optimal arm, denoted by a*(u),
such that

a* > max a
Har) = et (w)y

A learner interacts sequentially with an unknown bandit prob-
lem . At each round ¢t € N*, he

» picks an action A, € [K| depending on past observations

e obtains a reward from distribution N (p4,, 1)

Best-Arm Identification with fixed confidence

quantitative regularity results that we believe of high independent interest.

TRACK-AND-STOP [1]

Modifying the sampling strategy

The strategy of the learner consists of
* a sampling strategy that chooses the next action A,
* a stopping rule 7 and a decision rule a,

The goal of Best-Arm Identification (BAI) is

* to find strategies that identify the best action a* (@) with
probability at least (1 — 9) for any p, where § € (0,1) is a
confidence level, that is

Pu(dﬂs 7& a” (“’)) < 0

— such strategies are called o-correct

* among all d-correct strategies, find one that minimizes
the expected number of observations E, 7]

Lower bound for BAI [1]

Let Alt(p) = {X : a*(\) # a*(p) } be the set of bandit problems

A4

which have a different best arm than a*(u) and Ax £ {v €
[07 1]K : ZaE[K] Va = 1}

Theorem 1. For any d-correct strategy one has

Vp, Eulrs] > T(p) k15, 1 — )

sup  inf
veEAK AEAlt(p)

o 2
Z Uy (,LLa 2)\a) (1)

a€[K]

Asymptotically, this result yields lim inf Bpulrs

5—0 log(1/9) = T(w)

A o-correct strategy for which equality holds is called asymp-
totically optimal and should approximately sample arms ac-
cording to the optimal weight vector w(u) € Ax realizing the
supremum in the definition of 7'(u)

[1] Garivier, A. and Kaufmann, E. (2016), Optimal Best Arm
Identification with Fixed Confidence, In 29th Conference On
Learning Theory (COLT)

Let N, (t) and /i, (t) respectively denote the number of observa-
tions and average reward of arm a after round ¢

Main idea  Track the current optimal weight vector
w(f1(t)) and force some minimal exploration rate of order /¢
to ensure convergence to w(u)

Algorithm 1: TRACK-AND-STOP

Input: confidence level , threshold function §(t, )
Output: stopping time 75, estimated best arm a-,

Observe each arm once ; ¢t <+ K

while Z(t) < 3(¢,6) do

w(t) < w(fa(?))

if U, = {a € [K] : Nu(t) <+t— K/2} # @ then
Choose A¢11 € argmin, gy, Na(t)

else

Choose A¢11 € argmin,, ¢ Na(t) — S (s)
Observe Y4, , and increase ¢ by 1

Ts < t; Qry < argmax, c g fla(l)

Pros and cons

v/ d-correct using threshold 3(¢,0) = log(Rt*/J) for some
a € [1,2] and constant R

v/ asymptotically optimal
X lack of non-asymptotic result (for fixed values of 9)

X require to force exploration at an arbitrary rate (v/t here)

Tracking the estimate vector w(fi(t)) is quite hazardous: with-
out forced exploration, a bad estimate can lead to an under-
sampling of the worst arms

Improvement Compute a confidence region CR for u
around fi(¢) and track the optimal weight associated to some
bandit ;i € C'R that maximizes exploration by satisfying

~

min w, — max min w,(v
a€[K] (H) vECR a€[K] ( )

— this bandit & is computable: intuitively, maximizing wmnin
over CR requires to increase and equalize all the positive gaps
as much as possible, making the identification of the second
best arm more challenging ; this principle allows to restrict the
search for i to only a few candidates, one per potential best arm

The 3 candidates for the example C'R in red

We denote by OPTIMISTIC WEIGHTS(CR) the procedure com-
puting w(f)

EXPLORATION-BIASED SAMPLING

(1= ) (pa> — 12a)* < (ple = 11,)” < (1+ ) (fta — fha)’
forall a € [K|\ {a*} and some e € [0,1/7]|. Then

(1-3e)T(p) <T(p') < (1+6e)T(p)
(1 = 102)wq(p) < wa(p') < (14 102)wq ()

<
<

andVva € K|,

Numerical experiments

Goal

bounds and correct the unstability behaviors

Main idea Use the modified sampling strategy by comput-

ing confidence regions CR,(¢) for p at each round

Improve TRACK-AND-STOP to obtain non-asymptotic

Algorithm 2: EXPLORATION-BIASED SAMPLING

Input: confidence level 9, threshold function 3(¢, §), confidence
parameter
Output: stopping time 75, estimated best arm a.,

Observe each arm once ; ¢t +— K
while Z(t) < 5(t,9) do

CR(t) = T [0 (8) + 2R |
w(t) < OPTIMISTIC WEIGHTS(CR (1))

Choose Ait1 € argmin,, ¢ Na(t) — S Wa(s)
Observe Y4, , and increase ¢ by 1

Ts <t ; Qry < argmax, q g fla(l)

Pros and cons

v/ o0-correct using same threshold as TRACK-AND-STOP
v/ non-asymptotic bound with high probability

Theorem 2. Fix~ € (0,1),n € (0, 1]. There exists an
event £ of probability at least1 — ~ and ¢, > 0 such
that for any 0 < 6 < dg, algorithm EXPLORATION-
BIASED SAMPLING satisfies

Eplrsle] < (1+n)T(p)log(1/d) + 05—0(1)

(with an explicit formula for 6y and the os_.¢(1))

v/ asymptotically optimal
v/ natural exploration (no need to force exploration!)

X the convergence of w(t) to w(u) is slower than TRACK-
AND-STOP

Stability improvement
Track-and-Stop, D-tracking
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Evolution of w(t) when running the strategies with § = 0.01,
v=0.2and p = (0.9,0.8,0.6,0.4, 0.1).
The values of w(u) are dotted

TRACK-AND-STOP

X unstability of the weights: red and green weights fluctu-
ates (first estimates are poor in general, leading to unsta-
ble tracking weights, whereas intuitively one should pick
arms uniformly at the beginning)

X bad arms would be under-sampled without forced explo-
ration (blue and peaks)

EXPLORATION-BIASED SAMPLING

v/ uniform weight vector during first rounds
v/ stability of the tracking strategy

v/ cautious separation of the weights when a clear distinc-
tion of the estimates appears

Efficiency  The choice of the weights estimator, biased to-
ward uniform exploration, has a price: for practical values of
0, EXPLORATION-BIASED SAMPLING samples a little less the
best arms than TRACK-AND-STOP and thus requires more ob-
servations before taking a decision



